Journal of Mountain Science

, Volume 5, Issue 1, pp 52–62 | Cite as

GIS based spatial data analysis for landslide susceptibility mapping

  • S. SarkarEmail author
  • D. P. Kanungo
  • A. K. Patra
  • Pushpendra Kumar


Landslide susceptibility map delineates the potential zones for landslides occurrence. The paper presents a statistical approach through spatial data analysis in GIS for landslide susceptibility mapping in parts of Sikkim Himalaya. Six important causative factors for landslide occurrences were selected and corresponding thematic data layers were prepared in GIS. Topographic maps, satellite image, field data and published maps constitute the input data for thematic layer preparation. Numerical weights for different categories of these factors were determined based on a statistical approach and the weighted thematic layers were integrated in GIS environment to generate the landslide susceptibility map of the area. The landslide susceptibility map classifies the area into five different landslide susceptible zones i.e., very high, high, moderate, low and very low. This map was validated using the existing landslide distribution in the area.


Landslide susceptibility GIS Sikkim Himalaya statistical approach Himalaya 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anbalagan R. 1992. Landslide hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology, 32:269–277.CrossRefGoogle Scholar
  2. Bhasin R., Grimstad E., Larsen J. O., Dhawan A. K., Singh R, Verma S. K. and Venkatachalam K. 2002. Landslide hazards and mitigation measures at Gangtok, Sikkim Himalaya. Engg. Geology, 64:351–368.CrossRefGoogle Scholar
  3. Carrara A. 1983. Multivariate models for landslide hazard evaluation. Mathematical Geology, 15(3):403–427.CrossRefGoogle Scholar
  4. Carrara A., Cardinali M., Detti F., Guzzetti F., Pasqui V. and Reichenbach P. 1991. GIStechniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms, 16(5):427–445.CrossRefGoogle Scholar
  5. Chung C. F. and Fabbri A. G. 1999. Probabilistic Prediction Models for Landslide Hazard Mapping, Photogrammetric Engineering & Remote Sensing, 65(12), 1389–1399.Google Scholar
  6. Chung C. F., Fabbri A. G. and van Westen C. J. 1995. Multivariate regression analysis for landslide hazard zonation. Geographical Information Systems in Assessing Natural Hazards (A. Carrara, and F. Guzzetti, editors), Kluwer Academic Publishers, Dordrecht, pp.107–134.Google Scholar
  7. Dhakal A. S., Amada T. and Aniya M. 2000. Landslide hazard mapping and its evaluation using GIS: An investigation of sampling schemes for a grid-cell based quantitative method. Photogrammetric Engg. & Remote Sensing, 66(8):981–989.Google Scholar
  8. Gupta R. P. and Joshi B. C. 1990. Landslide hazard zoning using the GIS approach — A case study from Ramganga catchment, Himalaya. Engg. Geol, 28:119–131.CrossRefGoogle Scholar
  9. Jade S. and Sarkar S. 1993. Statistical model for slope instability classifications. Engineering Geology, 36:71–98.CrossRefGoogle Scholar
  10. Juang C. H., Lee D. H. and Sheu C. 1992. Mapping slope failure potential using fuzzy sets. Geotechnical Engineering, 118(3):475–494.CrossRefGoogle Scholar
  11. Kanungo D. P., Arora M. K., Sarkar S. and Gupta R. P. 2006. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, Vol. 85, pp. 347–366.CrossRefGoogle Scholar
  12. Kingsbury P. A., Hastie W. J. and Harrington A. J. 1992. Regional landslip hazard assessment using a GIS. Proceedings of the 6 th International Symposium on Landslides, Christchurc. 2:995–1000.Google Scholar
  13. Lee S., Choi J. and Min K. D. 2002b. Landslide Susceptibility Analysis and Verification using the Bayesian Probability Model, Environmental Geology, 43, 120–131.CrossRefGoogle Scholar
  14. Lin, M-L. and Tung, C-C. 2003. A GIS-based Potential Analysis of the Landslides induced by the Chi-Chi Earthquake, Engineering Geology, 71, 63–77.CrossRefGoogle Scholar
  15. Lu P. F. and An P. 1999. A Metric for Spatial Data Layers in Favorability Mapping for Geological Events, IEEE Transaction on Geosciences & Remote Sensing, 37, 1194–1198.CrossRefGoogle Scholar
  16. Nagarajan R., Mukherjee A., Roy A. and Khire M. V. 1998. Temporal remote sensing data and GIS application in landslide hazard zonation of part of Western Ghat, India. Remote Sensing, 19:573–585.CrossRefGoogle Scholar
  17. Pachauri A. K and Pant M. 1992. Landslide hazard mapping based on geological attributes. Engineering Geology, 32:81–100.CrossRefGoogle Scholar
  18. Raina V. K and Srivastava B. S. 1981. Tectonic evolution of the Sikkim Himalaya. Contemporary Geoscientific Reseraches in Himalaya, 1:29–40Google Scholar
  19. Saha A. K. Gupta R. P and Arora M. K. 2002. GIS-based landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. Int. Jour. of Remote sensing, 23(2):357–369.CrossRefGoogle Scholar
  20. Sarkar S., Kanungo D. P. and Mehrotra G. S. 1995. Landslide hazard zonation: A case study in Garhwal Himalaya, India. Mountain Research and Development, 15(4):301–309.CrossRefGoogle Scholar
  21. Sarkar S. and Kanungo D. P. 2004. An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogrammetric Engineering and Remote Sensing, 70(5):617–625.Google Scholar
  22. Sarkar S. and Gupta P. K. 2005. Techniques for landslide hazard zonation — application to Srinagar-Rudraprayag area of Garhwal Himalaya. Journal of Geological Society of India, 65:217–230.Google Scholar
  23. Sinha, B.N., Varma, R.S. and Paul, D.K., 1975. Landslides in Darjeeling district (West Bengal) and adjacent areas, Bulletins of the Geological Survey of India, Series B, No.36, 45 p.Google Scholar
  24. Westen C. J. 1994. GIS in landslide hazard zonation: a review, with examples from the Andes of Colombia. Mountain environments and geographical information systems (M.F. Price and D.I. Heywood, editors), Taylor & Francis Publishers, London, pp. 135–165.Google Scholar
  25. Yin K. L. and Yan T. Z. 1988. Statistical prediction models for slope instability of metamorphosed rocks. Proceedings of the 5 th International Symposium on Landslides, Lausanne, 2:1269–1272.Google Scholar

Copyright information

© Science Press 2007

Authors and Affiliations

  • S. Sarkar
    • 1
    Email author
  • D. P. Kanungo
    • 1
  • A. K. Patra
    • 1
  • Pushpendra Kumar
    • 1
  1. 1.Central Building Research InstituteRoorkeeIndia

Personalised recommendations