Advertisement

Journal of Mountain Science

, Volume 3, Issue 2, pp 91–124 | Cite as

Reconstruction of the Ice Age glaciation in the southern slopes of Mt. Everest, Cho Oyu, Lhotse and Makalu (Himalaya) (Part 1)

  • Matthias Kuhle
Article

Abstract

In the Khumbu-and Khumbakarna Himalaya an ice stream network and valley glacier system has been reconstructed for the last glacial period (Würmian, Last Ice Age, Isotope stage 4–2, 60–18 Ka BP, Stage 0) with glaciogeomorphological and sedimentological methods. It was a part of the glacier system of the Himalaya and has communicated across transfluence passes with the neighbouring ice stream networks toward the W and E. The ice stream network has also received inflow from the N, from a Tibetan ice stream network, by the Kyetrak-Nangpa-Bote Koshi Drangka (Valley) in the W, by the W-Rongbuk glacier valley into the Ngozumpa Drangka (Valley), by the Central Rongbuk glacier valley into the Khumbu Drangka (Valley) and by the antecedent Arun Nadi transverse-valley in the E of the investigation area. The ice thickness of the valley glacier sections, the surface of which was situated above the snow-line, amounted to 1000–1450 m. The most extended parent valley glaciers have been measured approx. 70 km in length (Dudh Koshi glacier), 67 km (Barun-Arun glacier) and 80 km (Arun glacier). The tongue end of the Arun glacier has flowed down to c. 500 m and that of the Dudh Koshi glacier to c. 900 m asl. At heights of the catchment areas of 8481 (or 8475) m (Makalu), i.e., 8848 (or 8872) m (Mt. Everest, Sagarmatha, Chogolungma) this is a vertical distance of the Ice Age glaciation of c. 8000 m. The steep faces towering up to 2000 m above the névé areas of the 6000–7000 m-high surfaces of the ice stream network were located 2000–5000 m above the ELA. Accordingly, their temperatures were so low, that their rock surfaces were free of flank ice and ice balconies. From the maximum past glacier extension up to the current glacier margins, 13 (altogether 14) glacier stages have been differentiated and in part 14C-dated. They were four glacier stages of the late glacial period, three of the neoglacial period and six of the historical period. By means of 130 medium-sized valley glaciers the corresponding ELA-depressions have been calculated in comparison with the current courses of the orographic snow-line. The number of the glacier stages since the maximum glaciation approx. agrees with that e.g. in the Alps and the Rocky Mountains since the last glacial period. Accordingly, it is interpreted as an indication of the Würmian age (last glacial period) of the lowest ice margin positions. The current climatic, average glacier snow-line in the research area runs about 5500 m asl. The snow-line depression (ELA) of the last glacial period (Würm) calculated by four methods has run about 3870 m asl, so that an ELA-depression of c. 1630 m has been determined. This corresponds to a lowering of the annual temperature by c. 8, i.e., 10°C according to the specific humid conditions at that time.

Keywords

Ground Moraine Lateral Moraine Valley Glacier Glacier Tongue Valley Flank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engelhardt W.V. 1973. Die Bildung von Sedimenten und Sedimentgesteinen. In: Engelhardt W.v., Füchtbauer H. & Müller G. (eds), Sediment-Petrologie. Vol. III., pp. 1–378.Google Scholar
  2. Köhn M. 1928. Bemerkungen zur mechanischen Bodenanalyse III: Ein neuer Pipettapparat. Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde, A 11: 50–54.Google Scholar
  3. König O. 1999. Preliminary results on the last high-glacial glaciation of the Rolwaling Himal and the Kangchenjunga Himal (Nepal, East-Himalaya). GeoJournal 47(1/2) (Kuhle M. (ed), Tibet and High Asia (V), Results of Investigations into High Mountain Geomorphology, Paleo-Glaciology and Climatology of the Pleistocene): 373–384.Google Scholar
  4. Kuhle M. 1974. Vorläufige Ausführungen morphologischer Feldarbeitsergebnisse aus den SE-Iranischen Hochgebirgen am Beispiel des Kuh-i-Jupar. Zeitschrift für Geomorphologie, N.F. 18(4): 472–483.Google Scholar
  5. Kuhle M., 1976. Beiträge zur Quartärgeomorphologie SE-Iranischer Hochgebirge. Die quartäre Vergletscherung des Kuh-i-Jupar. Göttinger Geographische Abhandlungen 67: Vol. I: 1–209; Vol. II: 1–105.Google Scholar
  6. Kuhle M. 1980. Klimageomorphologische Untersuchungen in der Dhaulagiri und Annapurna-Gruppe (Zentraler Himalaya). In Tagungsbericht und wissenschaftliche Abhandlungen des 42. Deutschen Geographentag Göttingen, 244–247.Google Scholar
  7. Kuhle M. 1982. Der Dhaulagiri-und Annapurna-Himalaya. Ein Beitrag zur Geomorphologie extremer Hochgebirge. Zeitschrift für Geomorphologie, Suppl. Vol. 41: Vol. I (Text) 1–229, Vol. II (Abb.) 1–183, Geomorph. Karte 1:85 000.Google Scholar
  8. Kuhle M., 1983a: Der Dhaulagiri-und Annapurna-Himalaya. Ein Beitrag zur Geomorphologie extremer Hochgebirge. Empirische Grundlage; Ergänzungsbd. III. Zeitschrift für Geomorphologie Suppl. Vol. 41: 1–383.Google Scholar
  9. Kuhle M. 1984a. Das Mt. Chomolungma-Massiv (Sagarmathaoder Mt. Everest-Massiv (27°59′N/86°56′E) — Zur Morphologie des Himalaya zwischen tibetischem Hochland und S-lichen Vorketten. Geographische Rundschau 36: 298, 300.Google Scholar
  10. Kuhle M. 1985a. Glaciation Research in the Himalayas: A New Ice Age Theory. Universitas 27(4): 281–294.Google Scholar
  11. Kuhle M. 1985b. Ein subtropisches Inlandeis als Eiszeitauslöser. Südtibet-und Mt. Everest-Expedition 1984. Georgia Augusta, Nachrichten aus der Universität Göttingen 42: 35–51.Google Scholar
  12. Kuhle M. 1986a. The South Tibet and Mt. Everest-Expedition 1984 — Geographical investigations in High Asia. Publikationen zu wissenschaftlichen Filmen des Institutes für den Wissenschaftlichen Film (IWF), Sektion Geographie D 1607: 1–37.Google Scholar
  13. Kuhle M. 1986b. Südtibet-und Mt. Everest-Expedition 1984-oder: Ein subtropisches Inlandeis als Eiszeitauslöser? Universitas 41(1): 64–78.Google Scholar
  14. Kuhle M. 1986c. Die Südtibet-und Mt. Everest-Expedition 1984 — Geographische Untersuchungen in Hochasien. Publikationen zu wissenschaftlichen Filmen des Institutes für den Wissenschaftlichen Film (IWF), Sektion Geographie D 1607: 1–37.Google Scholar
  15. Kuhle M. 1986d. The South Tibet and Mt. Everest-Expedition 1984 — Geographical Investigations in High Asia. Wissenschaftlicher Tonfilm, 45 min. Farbtonfilm Film D 1607, Produktion des Instituts für den wissenschaftlichen Film (IWF), Göttingen (German and English Version).Google Scholar
  16. Kuhle M. 1986e. Die Vergletscherung Tibets und die Entstehung von Eiszeiten. Spektrum der Wissenschaften. Scientific American 9/86: 42–54.Google Scholar
  17. Kuhle M. 1986f. Investigaciones en el Himalaya sobre la glaciación: nueva teoría sobre la épocha glacial. Universitas 13(3): 215–226.Google Scholar
  18. Kuhle M. 1986g. Former glacial stades in the mountain areas surrounding Tibet — In the Himalayas (27–29°N: Dhaulagiri-, Annapurna-, Cho Qyu-, Gyachung Kang-areas) in the south and in the Kuen Lun and Quilian Shan (34–38°N: Animachin, Kakitu) in the north. In Joshi S.C., Haigh M.J., Pangtey Y.P.S., Joshi D.R., Dani D.D (eds), Nepal-Himalaya-Geo-Ecological Perspektives, pp. 437–473.Google Scholar
  19. Kuhle M. 1986h. Schneegrenzberechnung und typologische Klassifikation von Gletschern anhand spezifischer Reliefparameter. Petermanns Geographische Mitteilungen 130: 41–51.Google Scholar
  20. Kuhle M. 1986i. The Upper Limit of Glaciation in the Himalayas. GeoJournal 13(4): 331–346.CrossRefGoogle Scholar
  21. Kuhle M. 1986j. Die Obergrenze der Gletscherhöhenstufe — Oberflächentemperaturen und Vergletscherung der Himalayaflanken von 5000–8800m. Zeitschrift für Gletscherkunde und Glazialgeologie 22(2): 149–162.Google Scholar
  22. Kuhle M. 1987a. Subtropical Mountain-and Highland-Glaciation as Ice Age Triggers and the Waning of the Glacial Periods in the Pleistocene. GeoJournal 14(4): 393–421.Google Scholar
  23. Kuhle M. 1987b. Absolute Datierungen zur jüngeren Gletschergeschichte im Mt Everest-Gebiet und die mathematische Korrektur von Schneegrenzberechnungen. In Hütteroth W.D. (ed), Tagunsbericht und wissenschaftliche Abhandlungen des 45. Deutschen Geographentages Berlin 1985, pp. 200–208.Google Scholar
  24. Kuhle M. 1987c. A Numerical Classification of Glaciers by Means of Specific Relief Parameter. Journal of Glaciology and Geocryology 9 (3, Sept. 1987, Chinese Society of Glaciology and Cryopedology, Academia Sinica): 207–214.Google Scholar
  25. Kuhle M., 1988a: The Pleistocene Glaciation of Tibet and the Onset of Ice Ages — an Autocycle Hypothesis. GeoJournal 17(4) (Kuhle M. & Wang Wenjing (eds), Tibet and High Asia (I), Results of the Sino-German Joint Expeditions): 581–596.Google Scholar
  26. Kuhle M. 1988b. Geomorphological Findings on the Build-up of Pleistocene Glaciation in Southern Tibet, and on the Problem of Inland Ice. Results of the Shisha Pangma and Mt. Everest Expedition 1984. GeoJournal 17(4) (Kuhle M. & WANG Wenjing (eds), Tibet and High Asia (I), Results of the Sino-German Joint Expeditions): 457–513.Google Scholar
  27. Kuhle M. 1988c. Subtropical Mountain-and Highland-Glaciation as Ice Age Triggers and the Waning of the Glacial Periods in the Pleistocene. (Chinese Translation), Bulletin of Glaciology and Geocryology 5(4): 1–17.Google Scholar
  28. Kuhle M. 1988d. Heutige und eiszeitliche Vergletscherung Hochtibets. Ergebnisse der Südtibet-und Mt. Everest Expedition 1984. Publikationen zu wissenschaftlichen Filmen des Institutes für den Wissenschaftlichen Film (IWF), Sektion Naturwissenschaften, Serie 10, D 1649: 1–36.Google Scholar
  29. Kuhle M. 1988e. Heutige und eiszeitliche Vergletscherung Hochtibets. Ergebnisse der Südtibet-und Mt.-Everest-Expedition 1984. Wissenschaftlicher Tonfilm, 43,5 min. Farbtonfilm Film D 1649, Produktion des Instituts für den wissenschaftlichen Film (IWF). Göttingen (German and English version).Google Scholar
  30. Kuhle M. 1988f. Topography as a Fundamental Element of Glacial Systems. A New Approach to ELA-Calculation and Typological Classification of Paleo-and Recent Glaciation. GeoJournal 17(4) (Kuhle M. & WANG Wenjing (eds), Tibet and High Asia (I), Results of the Sino-German Joint Expeditions): 545–568.Google Scholar
  31. Kuhle M. 1989. Die Inlandvereisung Tibets als Basis einer in der Globalstrahlungsgeometrie fußenden, reliefspezifischen Eiszeittheorie. Petermanns Geographische Mitteilungen 133(4): 265–285.Google Scholar
  32. Kuhle M. 1990. New Data on the Pleistocene Glacial Cover of the Southern Border of Tibet: The Glaciation of the Kangchendzönga Massif (8585m, E-Himalaya). GeoJournal 20: 415–421.Google Scholar
  33. Kuhle M. 1991a. Observations Supporting the Pleistocene Inland Glaciation of High Asia. GeoJournal 25(2/3) (Kuhle M. & Xu Daoming (eds), Tibet and High Asia (II), Results of the Sino-German Joint Expeditons): 133–233.Google Scholar
  34. Kuhle M. 1991b. Glazialgeomorphologie. Wissenschaftliche Buchgesellschaft, Darmstadt, pp. 213Google Scholar
  35. Kuhle M. (ed) 1994. Tibet and High-Asia. Results of the Sino-German and Russian-German Joint Expeditions (III). In: GeoJournal 33(2/3), Tibet and High Asia; Kluwer, Dord-recht/ Boston/ London: 131–328Google Scholar
  36. Kuhle M. (ed) 1997a. Tibet and High-Asia IV, Results of Investigations into High Mountain Geomorphology, Paleo-Glaciology and Climatology of the Pleistocene (Ice Age Research). Geojournal 42(2/3): 85–336.Google Scholar
  37. Kuhle M. 1997b. New Findings concerning the Ice Age (Last Glacial Maximum) Glacier Cover of the East-Pamir, of the Nanga Parbat up to the Central Himalaya and of Tibet, as well as the Age of the Tibetan Inland Ice. GeoJournal 42(2–3) (Kuhle M. (ed), Tibet and High Asia (IV), Results of Investigations into High Mountain Geomorphology, Paleo-Glaciology and Climatology of the Pleistocene (Ice Age Research): 87–257.Google Scholar
  38. Kuhle M. 1998a. Reconstruction of the 2.4 Million qkm Late Pleistocene Ice Sheet on the Tibetan Plateau and its Impact on the Global Climate. Quaternary International 45/46: 71–108 (Erratum: Vol. 47/48:173–182 (1998) included).CrossRefGoogle Scholar
  39. Kuhle M. 1998b. Neue Befunde zur hochglazialen (riß-bis würmzeitlichen) Inlandvereisung Tibets aus Süd-bis Zentralwest-Tibet mit weiteren Hinweisen auf ihre global-klimatische Bedeutung als Eiszeitauslöser. Berliner Geographische Abhandlungen 63 (Böse M. & Hofmann J. (eds), Forschungsergebnisse zur Klimageschichte und Reliefentwicklung Nordafrikas und Asiens. Dieter Jäkel-Festschrift): 121–151.Google Scholar
  40. Kuhle M. 1998c. New Findings on the Inland Glaciation of Tibet from South and Central West Tibet with Evidences for its Importance as an Ice Age Trigger. Himalayan Geology 19 (2, Tandon, O.P (ed), The Role of the Tibetan Plateau in Forcing Global Climatic Changes): 3–22.Google Scholar
  41. Kuhle M. (ed) 1999a. Tibet and High Asia (V) (Results of Investigations into High Mountain Geomorphology, Paleo-Glaciology and Climatology of the Pleistocene) GeoJournal 47(1/2). pp. 394.Google Scholar
  42. Kuhle M. 1999b. Reconstruction of an approximately complete Quaternary Tibetan Inland Glaciation between the Mt. Everest-and Cho Oyu Massifs and the Aksai Chin. — A new glaciogeomorphological southeast-northwest diagonal profile through Tibet and its consequences for the glacial isostasy and Ice Age cycle. GeoJournal 47(1–2) (Kuhle M. (ed), Tibet and High Asia (V), Results of Investigations into High Mountain Geomorphology, Paleo-Glaciology and Climatology of the Pleistocene): 3–276.Google Scholar
  43. Kuhle M. (ed), 2001a. Tibet and High Asia (VI): Glaciogeomorphology and Prehistoric Glaciation in the Karakorum and Himalaya. GeoJournal 54(2–4), 55 (1). pp. 475Google Scholar
  44. Kuhle M., 2001b (Published 2003). Reconstruction of Outlet Glacier Tongues of the Ice Age South-Tibetan Ice Cover between Cho Oyu and Shisha Pangma as a Further Proof of the Tibetan Inland Ice Sheet. Polarforschung 71(3): 79–95.Google Scholar
  45. Kuhle M. 2001c. The Maximum Ice Age (Lgm) Glaciation of the Central-and South Karakorum: an Investigation of the Hights of its Glacier Levels and Ice Thickness as well as Lowest Prehistoric Ice Margin Positions in the Hindukush, Himalaya and in East-Tibet on the Minya Konka-Massif. Geojournal 54(1–4), 55 (1) (Kuhle M. (ed), Tibet and High Asia (Vi), Glaciogeomorphology and Prehistoric Glaciation in the Karakorum and Himalaya): 109–396.Google Scholar
  46. Kuhle M. 2002a. Outlet Glaciers of the Pleistocene (Lgm) South Tibetian Ice Sheet Between Cho Oyu And Shisha Pangma as Potential Sources of Former Mega-Floods. In: Martini P., Baker V.R., Garzón G. (eds), Flood and Megaflood Processes and Deposits: Recent and Ancient Examples. Special Publication of the International Association of Sedimentologists (Ias). Vol. 32, Pp. 291–302.Google Scholar
  47. Kuhle M. 2002b. A Relief-Specific Model of the Ice Age on the Basis of Uplift-Controlled Glacier Areas in Tibet and the Corresponding Albedo Increase as well as their Positive Climatological Feedback by Means of the Global Radiation Geometry. Climate Research 20: 1–7.Google Scholar
  48. Kuhle M. 2004a. The High Glacial (Last Ice Age and LGM) ice cover in High and Central Asia. In: Ehlers J. & Gibbard P.L. (eds), Development in Quaternary Science 2c (Quarternary Glaciation — Extent and Chronology, Part III: South America, Asia, Africa, Australia, Antarctica), pp. 175–199.Google Scholar
  49. Kuhle M. 2004b. Aktuelle Gletscherdynamik in Hochasien — Fallstudien. Geographie und Schule 26(148): 16–20.Google Scholar
  50. Kuhle, M. 2005. Glacial Geomorphology and Ice Ages in Tibet and Surrounding Mountains. The Island Arc 14(4), 346–367. (Blackwell Publishing Asia Pty Ltd)CrossRefGoogle Scholar
  51. Kuhle M. & Daoming X. (eds). 1991: Tibet and High Asia (II), Results of the Sino-German Joint Expeditions. GeoJournal 25(2/3): 131–303.Google Scholar
  52. Kuhle M. & Jacobsen J.P. 1988. On the Geoecology of Southern Tibet — Measurements of Climate Parameters including Surface-and Soil-Temperatures in Debris, Rock, Snow, Firn and Ice during the South Tibet-and Mt. Everest Expedition in 1984. GeoJournal 17(4) (Kuhle M. & Wang Wenjing (eds), Tibet and High Asia (I), Results of the Sino-German Joint Expeditions): 597–615.Google Scholar
  53. Kuhle M. & Wang Wenjing 1988. Tibet and High Asia — Results of the Sino-German Joint Expeditions (I). GeoJournal 17(4): 446–667.Google Scholar
  54. Mahaney W.C. 1995. Glacial Crushing, Weathering and Diagenetic Histories of Quartz Grains inferred from Scanning Electron Microscopy. In: Menzies, J. (ed), Modern Glacial Environments — Processes, Dynamics and Sediments, Vol. 1, pp. 487–506.Google Scholar
  55. Wissmann H. 1959. Die heutige Vergletscherung und Schneegrenze in Hochasien mit Hinweis auf die Vergletscherung der letzten Eiszeit. Akademie der Wissenschaften und der Literatur Mainz, Mathetematischnaturwissenschaftliche Klasse 14: 1103–1407.Google Scholar

Copyright information

© Science Press 2006

Authors and Affiliations

  • Matthias Kuhle
    • 1
  1. 1.Geographie/HochgebirgsgeomorphologieGeographisches Institut der UniversitätGöttingenGermany

Personalised recommendations