Journal of Mountain Science

, Volume 2, Issue 1, pp 5–22 | Cite as

The maximum ice age glaciation between the karakorum main ridge (K2) and the tarim basin and its influence on global energy balance

  • Matthias Kuhle


A modern research approach and working techniques in hitherto unexamined areas, produced the following results: 1). The tongues of decakilometre long Karakorum glaciers belong to temperate ice-streams with an annual meltwater output. The short Aghil glaciers on the contrary are continental, arid and cold. 2). The present-day oscillations of the Karakorum glaciers are related to their own mass, and are contrary to and independent of the actual climate. Only the short glaciers, with steep tongue fronts, show a present-day positive balance. 3). 14C- dated Late Glacial moraines indicate a 400–800 m thick valley glacier at the former confluence point of the K2-, Sarpo Laggo- and Skamri glaciers. 4). From the evidence of transfluence passes with roches moutonnées, striae and the limits of glacial polishing, as well as moraines and erratics, a High Glacial at least 1200 m thick ice-stream network between the Karakorums and the Kuen Lun north slopes was reconstructed. The Shaksgam and Yarkand valleys were occupied by glaciers coming from west Tibet. The lowest-lying moraines are to be found in the foreland down to 2000 m, indicating a depression of the High Glacial (LGM) snowline (ELA) by 1300 m. 5). The approximately 10,000 measurements of the radiation balance at up to heights of 5500 m on K2 indicate that with incoming energy near the solar constant the reflection from snow- covered ice is up to 70% greater than from rock and rock waste surfaces. 6). These results confirm for the very dry western margins of Tibet an almost complete ice sheet cover in an area with subtropical energy balance, conforming with the Ice Age hypothesis of the author which is based upon the presence of a 2.4 million km2 Tibetan inland ice sheet. This inland ice developed for the first time when Tibet was uplifted over the snowline during the early Pleistocene. As the measured subtropical radiation balance shows, it was able to trigger the Quaternary Ice Ages.


Karakorum Tibet ice age glaciation paleoclimate ice age theory high mountain geomorphology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Desio, A. 1930. Itinerari percorsi durante la spedizione geografica Italiana nel Karakoram. Boll. R. Soc. Geogr. Ital., VI (7 e 8): 163–181, 277–300Google Scholar
  2. Desio, A. 1936. La spedizione geografica Italiana al Karakoram 1929. Risultati geografici. Pubbl. effettuata sotto gli auspici della R. Soc. Geogr. Ital., del Club Alpino Italiano e del Commune di Milano. Pp 107–563, Milano, RomaGoogle Scholar
  3. Höfer, H. von 1879: Gletscher und Eiszeitstudien, Sitzungsber. d. Akad. d. Wiss. Wien, Math.-Phys. Kl.I,79. WienGoogle Scholar
  4. Imbrie, J. and A. Berger (eds.) 1984: Milankovic and Climate Change. AmsterdamGoogle Scholar
  5. Klebelsberg, R. von 1940: A. Desio’s Gletscherbeobachtungen imGoogle Scholar
  6. Karakorum. Italienische Karakorum-Expedion 1929. Zeitschrift. für. Gletscherkunde XXVII, 1/2, InnsbruckGoogle Scholar
  7. Kuhle, M. 1980: Klimageomorphologische Untersuchungen in der Dhaulagiri- u. Annapurna-Gruppe (Zentraler Himalaya). 42. Geographentag Göttingen, Tagungsberichte und wissenchaftliche Abhandlungen. Pp 244–247, WiesbadenGoogle Scholar
  8. Kuhle, M. 1982a: Der Dhaulagiri- u. Annapurna-Himalaya. Ein Beitrag zur Geomorphologie extremer Hochgebirge. Zeitschrift für Geomorphologie, Suppl. Bd. 41, Bd.1 u.2: 1–229, Abb.1–184Google Scholar
  9. Kuhle, M. 1982b: Was spricht für eine pleistozäne Inlandvereisung Hochtibets? Sitzungsber. d. Braunschweig. Wiss. Ges., Sonderh.6, GöttingenGoogle Scholar
  10. Kuhle, M. 1983a: The Problem of a Pleistocene Inland Glaciation of NE-Tibet (Qinghai-Xizang). Journal of Glaciology/Academia Sinica, Lanzhou Inst., BeijingGoogle Scholar
  11. Kuhle, M. 1983b: Glacial, Nival and Periglacial Environments in NE-Tibet Quinghai-Xizang Plateau. Journal of Glaciology/Academia Sinica, Lanzhou Inst., BeijingGoogle Scholar
  12. Kuhle, M. 1984a: Die Kuen Lun-N-Abdachung zur Tsaidam Depression: Ausdeutung einer Satellitenphotographie (35°45′–37°40′N/91°30′–92°52′E) über Feldarbeitsbefunde benachbarter Areale mit analoger gemorphologischer Sequenz. Geographische Rundschau 6: 299–301Google Scholar
  13. Kuhle, M. 1984b: Spuren hocheiszeitlicher Gletscherbedeckung in der Aconcagua-Gruppe (32°–33°S). Zentralblatt für Geologie und Paläontologie Teil I, Verhandlgsband des Südamerika-Symposiums 1984 in Bamberg, 11/12: 1635–1646. BambergGoogle Scholar
  14. Kuhle, M. 1985a: Ein subtropisches Inlandeis als Eiszeitauslöser. Südtibet- und Mt. Everest-Expedition 1984. Georgia Augusta. Pp 35–51, GöttingenGoogle Scholar
  15. Kuhle, M. 1985b: Absolute Datierungen zur jüngeren Gletschergeschichte im Mt. Everest-Gebiet und die mathematische Korrektur von Schneegrenzberechnungen. 45. Deutscher Geographentag Berlin, Tagungsberichte und wissenschaftliche Abhandlungen. Pp. 200–208, StuttgartGoogle Scholar
  16. Kuhle, M. 1986a. Former Glacial Stades in the Mountain Areas urrounding Tibet - in the Himalayas (27°–29°N: Dhaulagiri, Annapurna, Cho Oyu and Gyachung Kang Areas) in the south, and in the Kuen Lun and Quilian Shan (34°–38°N:Animachin, Kakitu) in the north. In Joshi, S.C., editor, Nepal Himalaya. Geo-Ecological Perspectives. New Delhi. Pp 437–473Google Scholar
  17. Kuhle, M. 1986b: Die Vergletscherung Tibets und die Entstehung von Eiszeiten. Spektrum der Wissenschaft 1986(9): 42–54Google Scholar
  18. Kuhle, M. 1986c: Schneegrenzbestimmung und typologische Klassifikation von Gletschern anhand spezifischer Reliefparameter. Petermanns Geographische. Mitteilungen. 1: 41–51Google Scholar
  19. Kuhle, M. 1987: Subtropical Mountain- and Highland Glaciation as Ice Age Triggers and the Waning of the Glacial Periods in the Pleistocene. GeoJournal 14 (4): 393–421. Dordrecht/Boston/LondonCrossRefGoogle Scholar
  20. Kuhle, M. 1988: The Pleistocene Glaciation of Tibet and the Onset of Ice Ages — An Autocycle Hypothesis. GeoJournal 17 (4): 581–597. Dordrecht/Boston/LondonGoogle Scholar
  21. Kuhn, M. 1983: Die Höhe der Schneegrenze in Tirol, berechnet aus Fliris klimatischen Profilen. Arb. z. Quartär-u. Klimaforschung. Innsbrucker Geographische Studien 8: 85–91. InnsbruckGoogle Scholar
  22. Liedtke, H. 1986: Stand und Aufgabe der Eiszeitforschung. Geographische Rundschau 38(7–8): 412–419Google Scholar
  23. Mason, K. 1930: The Glaciers of Karakoram and Neighbourhood. Records Geological Survey of India 2: 214–278Google Scholar
  24. Milankovic, M. 1941: Kanon der Erdbestrahlung. Belgrad.Google Scholar
  25. Norin, E. 1932: Quaternary Climatic Changes within the Tarim Basin. Geographical Review 22: 591–598CrossRefGoogle Scholar
  26. Porter, S. C. 1970: Quaternary Glacial Record in Swat Kohistan, West Pakistan. Geological Society of America Bulletin 81: 1421–1446CrossRefGoogle Scholar
  27. Operational Navigation Chart 1974: Scale 1:1 000 000, ONC G-7, Ed.5, St.Louis MissGoogle Scholar
  28. Schneider, H.-J. 1962: Die Gletschertypen. Versuch im Sinne einer Einheitlichen Terminologie. Geographische Taschenbuch 1962/63. Pp 276–283. WiesbadenGoogle Scholar
  29. Schwarzbach, M. 1974: Das Klima der Vorzeit. 3. Aufl. StuttgartGoogle Scholar
  30. Spender, M. 1937: Parts of the Great Karakoram and of the Aghil Mountains. Map Scale 1:250,000/Shaksgam ExpeditionGoogle Scholar
  31. Visser, Ph. C. and J. Visser-Hooff, editors 1938: Wissenschaftliche Ergebnisse der niederländischen Expeditionen in den Jahren 1922; 1925, 1929/30 und 1935, Vol. 2 (IV): Glaziologie, LeidenGoogle Scholar
  32. Weng Wen Po and T.S. Lee 1946: A Preliminary Study on the Quaternary Glaciation of the Nanshan. Bulletin Geological Society of China 26: 163–171Google Scholar
  33. Wiche, K. 1958. Die österreichische Karakorum-Expedition 1958. Mitteilungen der Geographischen Gesellschaft Wien 100: 280–294Google Scholar
  34. Wissmann, H. von 1959: Die heutige Vergletscherung und Schneegrenze in Hochasien mit Hinweisen auf die Vergletscherung der letzten Eiszeit. Akad. d. Wiss. u. d. Lit., Abh. d. math.-nat. wiss. Kl., 14: 1103–1407, Mainz.Google Scholar

Copyright information

© Institute of Mountain Hazards and Environment, CAS(IMHE) and Science Press 2005

Authors and Affiliations

  • Matthias Kuhle
    • 1
  1. 1.Geographie/HochgebirgsgeomorphologieGeographisches Institut der UniversitätGöttingenGermany

Personalised recommendations