In Vitro Cellular & Developmental Biology - Plant

, Volume 35, Issue 5, pp 382–387 | Cite as

Can in vitro biology have farm-level impact for small-scale cassava farmers in Latin America?

  • A. M. Thro
  • W. M. Roca
  • J. Restrepo
  • H. Caballero
  • S. Poats
  • R. Escobar
  • G. Mafla
  • C. Hernandez
Feature Article

Summary

Cassava is uniquely suited for food security and economic development in unfavored areas of the tropics. Development research for cassava is an urgent need. In 1998, the Cassava Biotechnology Network (CBN) convened a workshop of cassava stakeholder groups in Latin America. After hearing an opening statement from representatives of small-scale cassava producers and processors, stakeholders formulated a consensus set of research and development (R&D) priorities. An adequate supply of good-quality planting material of desired varieties was clearly the most urgent, followed by R&D on market-value traits; yield losses due to pests, diseases, and drought; and cropping system flexibility.

Two new projects are using in vitro techniques to address priorities of small-scale cassava farmers in Latin America. One project in Colombia combines a nongovernmental organization, a local farmers’ association, and the international research center, CIAT, to explore affordable micropropagation. Findings to date show that most culture medium components can be replaced with local products, and a rustic growth room permits good culture growth without electricity or air conditioning. Low-costs system(s) developed will be assessed as a local microenterprise.

A second project, in Ecuador, couples local cassava germplasm (with oral histories and an in vitro back-up collection) and elite clones (introduced in vitro) with new concepts in agribusiness development, to restart local farmers’ cooperatives after the disastrous 1998–99 el Niño floods. The project was developed through group planning by the cooperatives, the local technical university, the national agricultural research program, and CIAT.

Research to improve in vitro tools focuses on safe and stable conservation and exchange of cassava genetic resources, long-term, less expensive conservation, rapid clonal propagation, and ultimately, genetic transformation technologies to add desired traits to useful cassava varieties.

Key words

cassava Manihot esculenta Crantz micropropagation small-scale farmers participatory research bioreactors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akano, A. O.; Asiedu, R.; Ng, S. Y. C.; Atiri, G. I. Effect of African cassava mosaic disease on growth and yield components of virus-tested cassava genotypes derived from meristem culture in early and late planting periods in three agroecologies of Nigeria. Proceedings of the Third International Scientific Meeting, Cassava Biotechnology Network, Kampala, Uganda, Aug. 1996. African J. Trop. Root Crops 26–30 2:44–48; 1997.Google Scholar
  2. Angel, F.; Barney, V. E.; Tohme, J.; Roca, W. M. Stability of cassava plants at the DNA level after retrieval from 10 years of in-vitro storage. Euphytica 90:307–313; 1996.CrossRefGoogle Scholar
  3. Arias, D. I.; Sayre, R. T. Genetic engineering approaches to reducing cyanide toxicity in cassava (Manihot esculenta Crantz) Abstract. Brazilian Cassava Journal (Supplement): Vol. 17:29; 1998.Google Scholar
  4. Cock, J. H.; Franklin, D.; Sandoval, G.; Juri, P. The ideal cassava plant for maximum yield. Crop Sci. 19:271–279; 1979.CrossRefGoogle Scholar
  5. Delgado, G. E.; Rojas, C. Cassava “seed” production program by meristem culture in UNPRG, Lambayeque, Peru. In: Thro, A. M.; Roca, W., ed. Proceedings of the First International Scientific Meeting, Cassava Biotechnology Network, Cartagena, Colombia, 25–28 August 1992. CIAT Working Doc. No. 123:146–148; 1993.Google Scholar
  6. Escobar, R. H.; Mafla, G.; Roca, W. M. Cryopreservation for long-term conservation of cassava genetic resources. In: Proceedings of the Second International Scientific Meeting, Cassava Biotechnology Network, Bogor, Indonesia, 25–28 August 1994. CIAT Working Doc. No. 150:190–193; 1995.Google Scholar
  7. Epperson, J. E.; Pachico, D. H.; Guevara, C. L. The costs of maintaining genetic resources for cassava, Manihot esculenta Crantz. Acta Hortic. 429:409–413; 1996.Google Scholar
  8. Garcia, G. M.; Vega, V. M.; Rodriguez, M. S. Effect of meristem culture on vigour and yield of the cassava clone “Senorita”. In: Thro, A. M.; Roca, W., ed. Proceedings of the First International Scientific Meeting, Cassava Biotechnology Network, Cartagena, Colombia, 25–28 August 1992. CIAT Working Doc. No. 123:149–153; 1993.Google Scholar
  9. Gonzalez, A. E.; Schopke, C.; Taylor, N. J.; Beachy, R. N.; Fauquet, C. M. Regeneration of transgenic cassava plants (Manihot esculenta Crantz) through Agrobacterium-mediated transformation of embryogenic suspension cultures. Plant Cell Rep. 17:827–831; 1998.CrossRefGoogle Scholar
  10. Guo, J. Y.; Liu, Y. Q. Rapid propagation of cassava by tissue culture and its application in rural districts in China. In: Proceedings of the Second International Scientific Meeting, Cassava Biotechnology Network, Bogor, Indonesia, 25–28 August 1994. CIAT Working Doc. No. 150:183–189; 1995.Google Scholar
  11. Henry, G.; Howeler, R. Cassava in China in an era of change. A CBN case study in Southeastern China, August 1994. CIAT Working Doc. No. 155; 1995.Google Scholar
  12. Henry, G.; Iglesias, C. Problems and opportunity in cassava biotechnology. In: Thro, A. M.; Roca, W., ed. Proceedings of the First International Scientific Meeting, Cassava Biotechnology Network, Cartagena, Colombia, 25–28 August 1992. CIAT Working Doc. No. 123:432–461; 1993.Google Scholar
  13. IPGRI/CIAT. Establishment and operation of a pilot in vitro active genebank. Report of a CIAT-IBPGR Collaborative Project using cassava (Manihot esculenta Crantz) as a model. A joint publication of IPBRI, Rome, and CIAT, Cali, Colombia; 1994; 59p.Google Scholar
  14. Li, H. Q.; Sautter, C.; Potrykus, I.; Pounti-Kaerlas, J. Genetic transformation of cassava (Manihot esculenta Crantz) Nat. Biotechnol. 14:736–740; 1996.PubMedCrossRefGoogle Scholar
  15. Mabanza, J.; Rodriguez-Andriyamasi, A. F.; Mahouka, J.; Boumba, B. Evaluation of cleaned cassava varieties in Congo. In: Proceedings of the Second International Scientific Meeting, Cassava Biotechnology Network, Bogor, Indonesia, 25–28 August 1994. CIAT Working Doc. No. 150:194–201; 1995.Google Scholar
  16. Ng, S. Y. C.; Ilona, P.; Adeniyi, O. J. Post-flask management of cassava and yam. Trop. Root Tuber Crops Bull. 8:6–7; 1994.Google Scholar
  17. PROFISMA. Ecologically sustainable cassava plant protection in South America and Africa: an environmentally sound approach. Protecao Fitosanitária Sustentável da Mandioca na America Latina e Africa (PROFISMA). Annual Report 1997:68–196.Google Scholar
  18. Raemakers, C. J. M.; Sofiari, E.; Taylor, N. J.; Henshaw, G. G.; Jacobsen, E.; Visser, R. G. F. Production of transgenic cassava (Manihot esculenta Crantz) plants by particle bombardment using luciferase activity as selection marker. Mol. Breed. 2:339–349; 1996.CrossRefGoogle Scholar
  19. Roca, W. M. Cassava. In: Sharp, W.; Evans, D.; Ammirato, P.; Yamada, Y., ed. Handbook of plant cell culture. Vol. 2. Crop species. New York: Macmillan; 1984:269–301.Google Scholar
  20. Roca, W. M.; Nolt, B.; Mafla, G.; Roa, J.; Reyes, R. Eliminación de virus y propagación de clones en la yuca (Manihot esculenta Crantz). In: Roca, W. M.; Mroginski, L. A., ed. Cultivo de tejidos en la agricultura: fundamentos y aplicaciones. CIAT, Colombia; 1991:403–420.Google Scholar
  21. Roca, W.; Henry, G.; Angel, F.; Sarria, R. Biotechnology research applied to cassava improvement at the International Center of Tropical Agriculture (CIAT). Agric. Biotechnol. News Inf. C. A. B. Int. 4:303–308; 1992.Google Scholar
  22. Roca, W. M.; Chavez, R.; Marin, M. L.; Arias, D. I.; Mafla, G.; Reyes, R. In vitro methods of germ-plasm conservation. Genome 31:813–817; 1989.Google Scholar
  23. Sarria, R.; Torres, E.; Angel, F.; Chavarriaga, P.; Roca, W. M. Ppt-Resistant cassavao obtained through Agrobacterium-mediated transformation. Plant Cell Rep. In press.Google Scholar
  24. Sarria, R.; Torres, E.; Balcazar, N.; Destefano, L; Roca, W. M. Progress in Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz). In: Proceedings of the Second International Scientific Meeting, Cassava Biotechnology Network, Bogor, Indonesia, 24–28 August 1994. CIAT Working Doc. No. 150:241–244; 1995.Google Scholar
  25. Schopke, C.; Taylor, N. J.; Cárcano, R.; Konan, N. K.; Marmey, P.; Henshaw, G. G.; Beachy, R. N.; Fauquet, C. M. Regeneration of cassava plants (Manihot esculenta Crantz) for microbombarded embryogenic suspension cultures. Nat. Biotechnol. 14:731–735; 1996.PubMedCrossRefGoogle Scholar
  26. Stamp, J. A.; Henshaw, G. G. Secondary somatic embryogenesis and plant regeneration in cassava. Plant Cell Tissue Organ Cult. 10:227–233; 1987.CrossRefGoogle Scholar
  27. Taylor, N. J.; Edwards, M.; Kiernan, R.; Davey, C. D. M.; Blakesley, D.; Henshaw, G. G. Development of friable embryogenic callus and embryogenic suspension culture systems in cassava (Manihot esculenta Crantz). Nat. Biotech. 14:126–130; 1996.Google Scholar
  28. Thresh, J. M.; Otim-Nape, G. W.; Fargette, D. African cassava mosaic disease: an overall perspective. In: Thro, A. M.; Akoroda, M. O. Proceedings of the Third International Scientific Meeting, Cassava Biotechnology Network, Kampala, Uganda, 26–30 August 1996. African J. of Trop. Root Crops 2:13–18; 1997.Google Scholar
  29. Thro, A. M.; Msabaha, M.; Kulembeka, H.; Shengero, W.; Kapande, A.; Mlingi, N.; Hemed, L.; Digges, P.; Cropley, J. Village perspectives on cassava production, processing, and use. A CBN Case Study in the Lake Zone of Northern Tanzania, October 1993. CIAT Working Doc. No. 154; 1994:82 p.Google Scholar
  30. Thro, A. M.; Herazo, L. E.; Lenis, J. I. Flor de Yuca—Que florece un región. Que puede hacer la biotecnología para ayudar el pequeño productor de yuca en la Costa Norte de Colombia? (“What can biotechnology do to help the small farmer in the North Coast region of Colombia?”; also available in English). CIAT Working Doc. No. 164; 1997:15 p.Google Scholar
  31. Uyen, N. V.; Vander Zaag, P. Vietnamese farmers use tissue culture for commercial potato production. Am. Potato J. 60:873–879; 1983.Google Scholar
  32. Visser, R. G. R.; Jacobsen, E. Towards modifying plants for altered starch content and composition. Trends Biotechnol. 11:63–68; 1993.CrossRefGoogle Scholar
  33. Zok, S. Rapid seed stock multiplication of improved clones of cassava through shoot tip culture in Cameroon. In: Thro, A. M.; Roca, W., ed. Proceedings of the First International Scientific Meeting, Cassava Biotechnology Network, Cartagena, Colombia, 25–28 August 1992. CIAT Working Doc. No. 123:96–104; 1993.Google Scholar

Copyright information

© Society for In Vitro Biology 1999

Authors and Affiliations

  • A. M. Thro
    • 1
  • W. M. Roca
    • 3
  • J. Restrepo
    • 4
  • H. Caballero
    • 5
  • S. Poats
    • 6
  • R. Escobar
    • 3
  • G. Mafla
    • 3
  • C. Hernandez
    • 7
  1. 1.U.S. Department of AgricultureAgricultural Marketing Service, Science and Technology ProgramsUSA
  2. 2.Cassava Biotechnology NetworkColombia
  3. 3.Centro Internacional de Agricultura Tropical (CIAT)CaliColombia
  4. 4.Fundación para la Investigación y Desarrollo Agricola (FIDAR)Colombia
  5. 5.Universidad Tecnica de ManabtManabtEcuador
  6. 6.Fundación Latino-Americana de Ciencias Sociales (FLACSO)QuitoEcuador
  7. 7.Asociación de Agricultores del PitalCaucaColombia
  8. 8.USDA/AMSBeltsville

Personalised recommendations