In vitro culture and conservation of microalgae: Applications for aquaculture, biotechnology and environmental research

  • John G. Day
  • Erica E. Benson
  • Roland A. Fleck
Feature Articles

Summary

Microalgae are a highly diverse group of unicellular organisms comprising the eukaryotic protists and the prokaryotic cyanobacteria or blue-green algae. The microalgae have a unique environmental status; being virtually ubiquitous in euphotic aquatic niches, they can occupy extreme habitats ranging from tropical coral reefs to the polar regions, and they contribute to half of the globe’s photosynthetic activity. Furthermore, they form the basis of the food chain for more than 70% of the world’s biomass. Microalgae are a valuable environmental and biotechnological resource, and the aim of this review is to explore the use of in vitro technologies in the conservation and sustainable exploitation of this remarkable group of organisms. The first part of the review evaluates the importance of in vitro methods in the maintenance and conservation of microalgae and describes the central role of culture collections in applied algal research. The second part explores the application of microalgal in vitro technologies, particularly in the context of the aquaculture and biotechnology industries. Emphasis is placed upon the exploitation of economically important algal products including aquaculture feed, biomass production for the health care sector, green fertilizers, pigments, vitamins, antioxidants, and antimicrobial agents. The contribution that microalgae can make to environmental research is also appraised; for example, they have an important role as indicator organisms in environmental impact assessments. Similarly, designated culture collection strains of microalgae are used for ecotoxicity testing. Throughout the review, emphasis is placed on the application of in vitro techniques for the continued advancement of microalgal research. The paper concludes by assessing future perspectives for the novel application of microalgae and their products.

Key words

algae microalgae aquaculture culture collections environment cryopreservation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, I. A. Food and food products from seaweeds. In: Lembi, C. A.; Waaland, J. R., ed. Algae and human affairs. Cambridge: Cambridge University Press; 1988:135–147.Google Scholar
  2. Abeliovich, A.; Weisman, D. The role of heterotrophic nutrition in the growth of the alga Scendesmus obliquous in high rate oxidation ponds. Appl. Environ. Microbiol. 35:32–36; 1978.PubMedGoogle Scholar
  3. Abeliovich, A. Factors limiting algal growth in high rate oxidation ponds. In: Shief, G.; Soeder, C. J., ed. Algae biomass production and use. Amsterdam: Elsevier North Holland Biomedical Press; 1980:205–216.Google Scholar
  4. Abeliovich, A. Algae in wastewater oxidation ponds. In: Richmond, A., ed. Handbook of microalgal mass culture. Boca Raton: CRC Press; 1986:331–338.Google Scholar
  5. Addison, R. F.; Stewart, J. E. Domoic acid and the eastern Canadian molluscan shellfish industry. Aquaculture 77:263–269; 1989.CrossRefGoogle Scholar
  6. Andersen, R. A. Algae. In: Hunter-Cevera, J. C.; Belt, A., ed. Maintaining cultures for biotechnology and industry. London: Academic Press, Inc.; 1996:29–64.Google Scholar
  7. Andersen, R. A.; Morton, S. C.; Sexton, J. P. Culture collection of marine phytoplankton catalogue of strains. J. Phycol. 33, Supplement 1; 1997.Google Scholar
  8. Baker, H.; Frank, O.; Pasher, I.; Matovitch, B.; Aaronsons, S.; Hutner, H.; Sobotka, H. A new bioassay method for biotin in blood, serum, urine and tissue. Ann. Biochem. 3:31–39; 1962.CrossRefGoogle Scholar
  9. Baker, E. R.; McLaughlin, J. J. A.; Hutner, S. H.; DeAngelis, B.; Feingold, S.; Frank, O.; Baker, H. Water soluble vitamins in cells and spent culture supernatants of Poteriochromonas stipitata, Euglena gracilis and Tetrahymena thermophila. Arch. Microbiol. 129:310–313; 1981.CrossRefGoogle Scholar
  10. Barclay, W. R.; Meager, K. M.; Abril, J. R. Heterotrophic production of long-chain omega-3 fatty acids utilizing algae and algae-like organisms. J. Appl. Phycol. 6:123–130; 1994.CrossRefGoogle Scholar
  11. Becker, E. W. Limitations of heavy removal from waste water by means of algae. Water Res. 17:458–466; 1983.CrossRefGoogle Scholar
  12. Becker, E. W. Cambridge studies in biotechnology. Vol. 10. Microalgae: biotechnology and microbiology. Cambridge: Cambridge University Press; 1994.Google Scholar
  13. Behrens, P. W.; Bringham, S. E.; Hoeksema, S. D.; Cohoon, D. L.; Cox, J. C. Studies on the incorporation of CO2 into starch by Chlorella vulgaris. J. Appl. Phycol. 1:123–130; 1989.CrossRefGoogle Scholar
  14. Ben-Amotz, A.; Avron, M. Glycerol, β-carotene and dry algal meal production by commerical cultivation of Dunaliella. In: Shelf, G.; Soeder, C. J., ed. Algae biomass. Amsterdam: Elsevier/North Holland Biomedical Press; 1980:603–610.Google Scholar
  15. Benemann, J. R. Hydrogen biotechnology: progress and prospects. Nat. Biotechnol. 14:1101–1103; 1990.CrossRefGoogle Scholar
  16. Benemann, J. R. Microalgae aquaculture feeds. J. Appl. Phycol. 4:233–245; 1992.CrossRefGoogle Scholar
  17. Benson, E. E. Cryopreservation. In: Dixon, R. A; Gonzalez, R. A., ed. Plant cell culture; a practical approach. Oxford: IRL Press; 1994:147–166.Google Scholar
  18. Benson, E. E. Cryopreservation. In: Benson, E. E., ed. Plant conservation biotechnology. London: Taylor and Francis Ltd.; 1999:83–95.Google Scholar
  19. Benson, E. E.; Fleck, R. A.: Bremner, D. A.; Day, J. G. Assessments of hydroxyl activity and antioxidant status in freeze-recalcitrant and freeze-sensitive algae: implications for cryopreserved culture collections. In Vitro Cell. Dev. Biol. Plant 34:P-1039, 52A; 1998.Google Scholar
  20. Bodas, K.; Brennig, C.; Diller, K. R.; Brand, J. J. Cryopreservation of bluegreen and eukaryotic algae in the culture collection at the University of Texas at Austin. Cryo. Lett. 16:267–274; 1995.Google Scholar
  21. Bold, H. C.; Wynne, M. J. Introduction to the algae: structure and reproduction. Englewood Cliffs, NJ: Prentice Hall Inc.; 1985.Google Scholar
  22. Borowitzka, L. J. Development of Western Biotechnology’s algal-carotene plant. Bioresour. Technol. 38:251–252; 1991.CrossRefGoogle Scholar
  23. Borowitzka, M. A. Closed algal photobioreactors: design considerations for large-scale systems. J. Mar. Biotechnol. 4:185–191; 1996.Google Scholar
  24. Borowitzka, M. A. Microalgae for aquaculture: opportunities and constraints. J. Appl. Phycol. 9:393–401; 1997.CrossRefGoogle Scholar
  25. Borowitzka, M. A.; Borowitzka, L. J. Micro-Algal biotechnology. New York: Cambridge University Press; 1988.Google Scholar
  26. Boussiba, S.; Fan, L.; Vonshak, A. Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. In: Packer, L., ed. Methods in enzymology. Vol. 213. Carotenoids, Part A: chemistry, separation, quantitation, and antioxidation. San Diego, CA; London, England: Academic Press, Inc.; 1992:386–391.CrossRefGoogle Scholar
  27. Briand, J.; Julistiono, H.; Beaune, P.; Flinois, J. P.; Dewaziers, I.; Leroux, J. P. Presence of proteins recognized by mammalian cytochrome P-450 antibodies in Euglena gracilis. Biochem. Biophys. Acta 1203:199–204; 1993.PubMedGoogle Scholar
  28. Brown, M. R. Effects of storage and processing on the ascorbic acid content of concentrates prepared from Chaetoceros calcitrans. J. Appl. Phycol. 7:495–500; 1995.CrossRefGoogle Scholar
  29. Cahu, C.; Guillaume, J. C.; Stephan, G.; Chim, L. Influence of polypholid and highly unsaturated fatty acids on spawning rate and egg and tissue composition in Penaeus vannamei fed semi-purified diets. Aquaculture 126:159–170; 1994.CrossRefGoogle Scholar
  30. Cavalier-Smith, T. Kingdom Protozoa and its 18 phyla. Microbiol. Rev. 57:953–994; 1993.PubMedGoogle Scholar
  31. Canavate, P. J.; Lubian, L. M. Tolerance of six marine microalgae to the cryoprotectants dimethyl sulfoxide and methanol. J. Phycol. 30:559–565; 1994.CrossRefGoogle Scholar
  32. Canavate, J. P.; Lubian, L. M. Relationship between cooling rates, cryoprotectant concentrations and salinities in the cryopreservation of marine microalgae. Mar. Biol. (Berlin) 124:325–334; 1995a.CrossRefGoogle Scholar
  33. Canavate, J. P.; Lubian, L. M. Some aspects on the cryopreservation of microalgae used as food for marine species. Aquaculture 136:277–290; 1995b.CrossRefGoogle Scholar
  34. Chrismadha, T.; Borowitzka, M. A. Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular bioreactor. J. Appl. Phycol. 6:67–74; 1994.CrossRefGoogle Scholar
  35. Cotterill, F. P. D. Systematic, biological knowledge and environmental conservation. Biodivers. Conserv. 4:183–205; 1995.CrossRefGoogle Scholar
  36. Day, J. G. Cryo-conservation of microalgae and cyanobacteria, Cryo. Lett. Suppl. 1:7–14; 1998.Google Scholar
  37. Day, J. G. Conservation strategies for algae. In: Plant conservation biotechnology. Benson, E. E., ed. London: Taylor and Francis Ltd.; 1999:111–124.Google Scholar
  38. Day, J. G.; DeVille, M. M. Cryopreservation of algae. Methods Mol. Biol. 38:81–90; 1995.PubMedGoogle Scholar
  39. Day, J. G.; Edwards, A. P.; Rodgers, G. A. Development of an industrial scale process for the heterotrophic production of a micro-algal mollusc feed. Bioresour. Technol. 38:245–250; 1991.CrossRefGoogle Scholar
  40. Day, J. G.; McLellan, M. R., ed. Cryopreservation and freeze-drying protocols. Methods in Molecular Biology 38: Totowa, NJ: Humana Press Inc.; 1995a.Google Scholar
  41. Day, J. G.; McLellan, M. R. Conservation of algae. In: Grout, B. W. W., ed. Genetic preservation of plant cells In vitro. Heidelberg: Springer Verlag; 1995b:75–98.Google Scholar
  42. Day, J. G.; Priestley, I. M; Codd, G. A. Storage reconstitution and photosynthetic activities of immobilized algae. In: Webb, C.; Mavituna, F., ed. Plant and animal cells, process possibilities. Chichester: Ellis Harwood Ltd.; 1987:257–261.Google Scholar
  43. Day, J. G.; Tsavalos, A. J. An investigation of the heterotrophic culture of the green alga Tetraselmis. J. Appl. Phycol. 8:73–77; 1996.CrossRefGoogle Scholar
  44. Day, J. G.; Turner, M. F. Algal culture collections and biotechnology. In: Watanabe, M. M., ed. Proceedings of the Symposium on Culture Collections of Algae. Tsukuba, Japan: NIES; 1992:11–27.Google Scholar
  45. De Pauw, N.; Persoone, G. Microalgae for aquaculture. In: Borowitzka, M. A.; Borowitzka, L. J., ed. Micro-Algal biotechnology. New York: Cambridge University Press; 1988:97–221.Google Scholar
  46. Dixon, R.; Cheng, Q.; Shen, G.-F.; Day, A.; Dowson-Day, M. Nif gene transfer and expression in chloroplasts: prospects and problems. Plant Soil 194:193–203; 1997.CrossRefGoogle Scholar
  47. Duncan, J. R.; Brady, D.; Wilhelmi, B. Immobilization of yeast and algal cells for bioremediation of heavy metals. In: Sheehan, D., ed. Methods in biotechnology, 2. Bioremediation Protocols. Totowa, NJ: Humana Press Inc.; 1997:91–97.CrossRefGoogle Scholar
  48. Endo, H.; Sanasawa, H.; Nakajima K. Studies on Chlorella regularis, heterotrophic fast growing strain II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiol. 18:199–205; 1977.Google Scholar
  49. Fabre, J.; Dereuddre, J. Encapsulation-dehydration: a new approach to cryopreservation of potato shoot-tips. Cryo. Lett. 11:413–426; 1990.Google Scholar
  50. Fallowfield, H. J.; Garrett, M. K. The photosynthetic treatment of pig slurry in temperate climatic conditions: a pilot-plant study. Agric. Wastes 12:111–136; 1985.CrossRefGoogle Scholar
  51. Fleck, R. A. 1998. Mechanisms of cell damage and recovery in cryopreserved freshwater protists, Ph.D. Thesis, University of Abertay Dundee, Scotland.Google Scholar
  52. Fleck, R. A.; Day, J. G.; Rana, K. J.; Benson, E. E. Visualization of cryoinjury and freeze events in the coenocytic alga Vaucheria sessilis using cryomicroscopy. Cryo. Lett. 18:343–355; 1997.Google Scholar
  53. Fulks, W.; Main, K. L. The design and operation of commercial-scale live feed production systems. In: Fulks, W.; Main, K. L., ed. Rotifer and microalgal culture systems. The Oceanic Institute, Honolulu; 1991:3–52.Google Scholar
  54. George, D. G.; Taylor, A. H. UK lake plankton and the Gulf Stream. Nature (Lond) 378:39; 1995.CrossRefGoogle Scholar
  55. Gerwick, W. H.; Roberts, M. A.; Proteau, P. J.; Chen, J. L. Screening cultured marine microalgae for anti-cancer-type activity. J. Appl. Phycol. 6:143–150; 1994.CrossRefGoogle Scholar
  56. Gibson, C.; Foy, R. H.; Bailey-Watts, A. E. An analysis of total phosphorus cycle in some temperate lakes; the response to enrichement. Freshwater Biol. 35:525–532; 1996.CrossRefGoogle Scholar
  57. Glazer, A. N. Phycobilliproteins—a family of valuable, widely used fluoroprobes. J. Appl. Phycol. 6:105–112; 1994.CrossRefGoogle Scholar
  58. Gudin, C.; Chaumont, D. Solar biotechnology study and development of tubular solar receptors for controlled production of photosynthetic cellular biomass. In: Palz, W.; Pirrwitz, D., ed. Proceedings of the Workshop and EC Contractors’ meeting in Carri. Dordrecht: Reidel Publishing Co.; 1983:184–189.Google Scholar
  59. Hawksworth, D. L. Microbial collections as a tool in biodiversity and biosystematic research. In: Samson, R. A.; Stalpers, J. A.; van der Mei, D.; Stouthamer, A. H., ed. Culture collections to improve the quality of life. Veldhoven, The Netherlands, August 25–29, 1996. Wageningen, The Netherlands: Ponsen & Looyen; 1996:26–35.Google Scholar
  60. Hawksworth, D. I.; Mound, L. A. Diversity data-bases: the crucial significance of collections. In Hawksworth, D. L., ed. The biodiversity of microorganisms and insects. Wallingford: CAB International; 1991:17–29.Google Scholar
  61. Hawksworth, D. L.; Ritchie, J. M. Biodiversity and biosystematic priorities: microorganisms and invertebrates. Wallingford: CAB International; 1993.Google Scholar
  62. Haworth, E. Y.; Pinder, L. C.; Lishman, J. P.; Duigan, C. A. The Anglesey lakes, Wales, UK—a palaeolimnological study of the eutrophication and nature conservation status. Aquat. Conserv. 6:61–80; 1996.CrossRefGoogle Scholar
  63. Hirata, K.; Phuchindawan, M.; Tukamoto, J.; Goda, S.; Miyamoto, K. Cryopreservation of microalgae using encapsulation-dehydration. Cryo. Lett. 17:321–328; 1996.Google Scholar
  64. Jaworski, G. H. M.; Wiseman, S. W.; Reynolds, C. S. Variability in sinking rate of the freshwater diatom Asterionella formosa: the influence of colony morphology. Br. Phycol. J. 23:167–176; 1988.Google Scholar
  65. Jensen, A. Present and future needs for algae and algal products. Hydrobiologia 261:15–24; 1993.CrossRefGoogle Scholar
  66. Johnson, E. A.; An, G. H. Astaxanthin from microbial sources. Crit. Rev. Biotechnol. 11:297–326; 1991.Google Scholar
  67. Johnson, E. A.; Schroeder, W. A. Microbial carotenoids. In: Fiechter, A., ed. Advances in biochemical engineering-biotechnology. Vol. 53. Downstream processing bioosurfactants/carotenoids. Berlin: Springer-Verlag; 1995:119–178.Google Scholar
  68. Jones, D. A.; Kurmaly, K.; Arshard, A. Paneid shrimp hatchery trials using microencapsulated diets. Aquaculture 64:133–164; 1987.CrossRefGoogle Scholar
  69. Kannaiyan, S.; Aruna, S. J.; Kumari, S. M. P.; Hall, D. O. Immobilized cyanobacteria as a biofertilizer for rice crops. J. Appl. Physcol. 9:167–174; 1997.CrossRefGoogle Scholar
  70. Kelley, M. G.; Cazaubon, A.; Coring, E.; Dell’Uomo, A.; Ector, L. Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J. Appl. Phycol. 10:215–224; 1998.CrossRefGoogle Scholar
  71. Kirsop, B.; Doyle, A. Maintenance of microorganisms and cultured cells. London: Academic Press Ltd.; 1991.Google Scholar
  72. Liao, W. L.; Nureborhan, S. A.; Okada, S.; Matsui, T.; Yamaguchi, K. Pigmentation of cultured black tiger prawn by feeding with a Spirulina-supplemented diet. Bull. Jpn. Soc. Sci. Fish. 59:165–169; 1993.Google Scholar
  73. Ma, J.; Miyazaki, S.; Sugawara, H. A handy database for culture collections worldwide: CCINFO-PC. Comput. Appl. Biosci. 11:209–212; 1995.PubMedGoogle Scholar
  74. Maberly, S. C.; Pettitt, M. The effects of ultraviolet radiation on Asterionella formosa. Phycologist 46:22–23; 1997.Google Scholar
  75. Malik, K. A. Preservation of unicellular green-algae by liquid-drying. J. Microbiol. Methods 18:41–46; 1993.CrossRefGoogle Scholar
  76. McGrath, M. S.; Daggett, P.-M.; Dilworth, S. Freeze-drying of algae: Chlorophyta and Chrysophyta. J. Phycol. 14:521–525; 1978.CrossRefGoogle Scholar
  77. McKay, R. M.; Geider, R. J.; LaRoche, J. Physiological and biochemical response of the photosynthetic apparatus of two marine diatoms to Fe stress. Plant Physiol. 114:615–622; 1997.PubMedGoogle Scholar
  78. McLellan, M. R.; Cowling, A. J.; Turner, M. F.; Day, J. G. Maintenance of algae and protozoa. In: Kirsop, B.; Doyle, A., ed. Maintenance of microorganisms and cultured cells. London: Academic Press Ltd.; 1991:183–208.Google Scholar
  79. Metting, B. The systematics and ecology of soil algae. Bot. Rev. 147:195–312; 1981.Google Scholar
  80. Metting, F. B., Jr. Micro-algae in agriculture. In: Borowitzka, M. A.; Borowitzka, L. J., ed. Microalgal biotechnology. Cambridge: Cambridge Univ. Press; 1988:228–304.Google Scholar
  81. Metting, F. B., Jr. Biodiversity and application of microalgae. J. Ind. Microbiol. Biotechnol. 17:477–489; 1996.CrossRefGoogle Scholar
  82. Millamena, O. M.; Aujero, E. J.; Borlongan, I. G. Techniques on algal harvesting and preservation for use in culture and as a larval food. Aquacult. Eng. 9:295–304; 1990.CrossRefGoogle Scholar
  83. Miyachi, S.; Nakayama, O.; Yokohama, Y.; Hara, Y.; Ohmori, M.; Komogata, K.; Sugawara, H.; Ugawa, Y., ed. World catalogue of algae. Tokyo: Japan Scientific Societies Press; 1989.Google Scholar
  84. Morris, G. J. The cryopreservation of Chlorella I. Interactions of rate of cooling, protective additive and warming rate. Archiv. Microbiol. 107:57–62; 1976.CrossRefGoogle Scholar
  85. Morris, G. J. Cryopreservation of 250 strains of Chlorococcales by the method of two step cooling. Br. Phycol. J. 13:15–24; 1978.Google Scholar
  86. Morris, G. J.; Coulson, G. E.; Engels, M. A cryomicroscopic study of Cylindrocystis brebissonii and two species of Micrasterias Conjugatophyceae Chlorophyta during freezing and thawing. J. Exp. Bot. 37:842–856; 1986.CrossRefGoogle Scholar
  87. Mumford, T. F.; Miura, A. Porphyra as food. In: Lembi, C. A.; Waaland, J. R., ed. Algae and human affairs. Cambridge: Cambridge University Press; 1988:87–117.Google Scholar
  88. Murray, J.; Thompson, A. Hydrocarbon production in Anacystis montana and Botryococcus braunii. Phytochemistry 16:465–468; 1977.CrossRefGoogle Scholar
  89. Nerad, T. A. ATCC Catalogue of protists. Rockville: American Type Culture Collection; 1993.Google Scholar
  90. OECD. OECD guidelines for testing chemicals. Section 2—Effects on biotic systems, No. 201, Alga, growth inhibition test. Paris: Organization for Economic Development; 1984.Google Scholar
  91. Ogbonna, J. C.; Tomiyama, S.; Tanaka, H. Heterotrophic cultivation of Euglena gracilis Z for efficient production of d-tocopherol. J. Appl. Phycol. 10:67–74; 1998.CrossRefGoogle Scholar
  92. Oswald, W. J. Micro-algae and waste-water treatment. In: Borowitzka, M.; Borowitzka, L. J., ed. Micro-algal biotechnology. Cambridge: Cambridge University Press; 1988:305–328.Google Scholar
  93. Oswald, W. J.; Goluke, C. G.; Gee, H. K. Wastewater reclamation through production of algae. Univ. California Water Resources Center, Contribution 22; 1957.Google Scholar
  94. Parker, M. Vitamin B12 in Lake Washington USA concentration and uptake. Limnol. Oceanogr. 22:527–538; 1977.CrossRefGoogle Scholar
  95. Patterson, G. M. L.; Larsen, L. K.; Moore, R. E. Bioactive natural products from blue-green algae. J. Appl. Phycol. 6:151–158; 1994.CrossRefGoogle Scholar
  96. Pflugmacher, S.; Sanderman, H. Cytochrome P450 monooxygenases for fatty acids and xenobiotics in marine macroalgae. Plant Physiol. 117:123–128; 1998.PubMedCrossRefGoogle Scholar
  97. Pharhad, N. M. Studies on microbial flora in oxidation ponds. Ph.D. Thesis, Central Public Health Engineering Research Institute, Nagpur, India; 1970.Google Scholar
  98. Pohl, M.; Kohlhase, M.; Martin, M. Pilot scale axenic mass cultivation of microalgae. I. Development of the biotechnology. Planta Med. 52:416–417; 1986.PubMedCrossRefGoogle Scholar
  99. Pouliot, Y.; De la Noue, J. Development of a pilot-scale facility for wastewater treatment and microalgal production. Rev. Fr. sci. eau 4:207–222; 1985.Google Scholar
  100. Renn, D. Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects. Trends Biotechnol. 15:9–14; 1997.CrossRefGoogle Scholar
  101. Robinson, L. F.; Morrison, A. W.; Bamforth, M. R. Improvements relating to biosynthesis. European Patent No. 261872; 1988.Google Scholar
  102. Roger, P. A.; Kulasooriya, S. A. Blue green algae and rice. International Rice Research Institute, Los Banos, The Philippines; 1980.Google Scholar
  103. Roper, M. M. Biological diversity of micro-organisms: An Australian perspective. Pac. Conserv. Biol. 1:21–28; 1993.Google Scholar
  104. Running, J. A.; Huss, R. J.; Olson, P. T. Heterotrophic production of ascorbic acid by microalgae. J. Appl. Phycol. 6:99–104; 1994.CrossRefGoogle Scholar
  105. Sato, V. The development of a phytoplankton production system as a support base for finfish larval rearing research. In: Fulks, W.; Main, K. L., ed. Rotifer and microalgal culture systems. The Oceanic Institute, Honolulu; 1991:257–273.Google Scholar
  106. Schlipalius, L. The extensive commercial cultivation of Dunaliella salina. Bioresour. Technol. 38:241–243; 1991.CrossRefGoogle Scholar
  107. Schlösser, U. G. SAG Sammlung von Algenkulturen at University of Göttingen. Bot. Acta 107:3–186; 1994.Google Scholar
  108. Shi, X.-M.; Chen, F.; Yuan, J.-P.; Chen, H. Heterotrophic production of leutin by selected Chlorella strains. J. Appl. Phycol. 9:445–450; 1997.CrossRefGoogle Scholar
  109. Shumway, S. E. Toxic algae a serious threat to shellfish aquaculture. World Aquacult. 20:5–74; 1989.Google Scholar
  110. Sommer, T. R.; Potts, W. T.; Morrissy, N. M. Utilization of microalgal astaxanthin by rainbow trout (Oncorhynchus mykiss). Aquaculture 94:79–88; 1991.CrossRefGoogle Scholar
  111. Starr, R. C.; Zeikus, J. A. UTEX-The culture collection of algae at the University of Texas at Austin. J. Phycol. 29:1–106; 1993.CrossRefGoogle Scholar
  112. Stein, J., ed. Handbook of phycological methods: culture methods and growth measurements. Cambridge: Cambridge University Press; 1973.Google Scholar
  113. Stevens, S. E.; Murphy, R. C.; Lamoreaux, W. J.; Coons, L. B. A genetically engineered mosquitocidal cyanobacterium. J. Appl. Phycol. 6:187–198; 1994.CrossRefGoogle Scholar
  114. Takano, H.; Takeyama, H.; Nakamura, N.; Sode, K.; Burges, J. G.; Manabe, E.; Hirano, M.; Matsunaga, T. CO2 removal by high-density culture of a marine cyanobacterium Synechococcus sp. using an improved photobioreactor employing light-diffusing otptical fibers. Appl. Biochem. Biotechnol. 34/35:449–458; 1992.CrossRefGoogle Scholar
  115. Thies, F.; Backhaus, T.; Bossmann, B.; Grimme, L. H. Xenobiotic biotransformation in unicellular green algae. Involvement of cytochrome P450 in activation and selectivity of the pyridazinone pro-herbicide metaflurazon. Plant Physiol. 112:361–370; 1996.PubMedCrossRefGoogle Scholar
  116. Tompkins, J.; DeVille, M. M.; Day, J. G.; Turner, M. F., ed. Culture collection of algae and Protozoa catalogue of strains. Ambleside: Culture Collection of Algae and Protozoa; 1995.Google Scholar
  117. Torzillo, G.; Pushparaj, B.; Bocci, F.; Balloni, W.; Materassi, R.; Florenzano, G. Production of Spirulina biomass in closed photobioreactors. Biomass 11:61–74; 1986.CrossRefGoogle Scholar
  118. Tredici, M. R.; Carlozzi, P.; Chini Zittelli, G.; Materassi, R. A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresour. Technol. 38:153–159; 1991.CrossRefGoogle Scholar
  119. Venkataraman, L. V. Blue-green algae as biofertilizer. In: Richmond, A., ed. CRC handbook of microalgal mass culture. Boca Raton: CRC Press Inc.; 1986:455–472.Google Scholar
  120. Vigneron, T.; Arbault, S.; Kaas, R. Cryopreservation of gametophytes of Laminaria digitata (L.) by encapsulation dehydration. Cryo Lett. 18:117–126; 1997.Google Scholar
  121. Vilchez, C.; Garbayo, I.; Lobato, M. V.; Vega, J. M. Microalgae-mediated chemicals production and wastes removal. Enzyme Microb. Technol. 20:456–572; 1997.CrossRefGoogle Scholar
  122. Warren, A.; Day, J. G.; Brown, S. Cultivation of protozoa and algae. In: Hurst, C. J.; Knudsen, G. R.; McInerney, M. J.; Stezenbach, L. D.; Walter, M. V., ed. Manual of environmental microbiology. Washington DC: ASM Press; 1997:61–71.Google Scholar
  123. Watanabe, M. M.; Hiroki, M. NIES-Collection List of strains. Tsukuba: NIES; 1997.Google Scholar
  124. Watanabe, M. M.; Shimizu, A.; Satake, K. NIES-Microbial Culture Collection at the National Institute of Environmental Studies: cryopreservation and database of culture strains of microalgae In: Watanabe, M. M., ed. Proceedings of the Symposium on Culture Collections of Algae. Tsukuba, Japan: NIES; 1992:33–41.Google Scholar
  125. Watson, R. H.; Jones, G. G.; Jones, B. L. Using centrifuged algae for feeding oyster larvae. J. Shellfish Res. 5:136; 1986.Google Scholar
  126. WDCM. http://wdcm.nig.ac.jp/. 1994.Google Scholar
  127. Wiessner, W.; Schnepf, E.; Starr, R. C. Algae, environment and human affairs. Bristol, UK: Biopress Ltd.; 1995.Google Scholar
  128. Wilde, E. A.; Benemann, J. R. Bioremoval of heavy metals by the use of microalgae. Biotechnol. Adv. 11:781–812; 1993.PubMedCrossRefGoogle Scholar
  129. Wilson, M. M.; Jackson, M. M.; Edyvean, R. G. J. The use of algae to decolourise and remove metal ions from industrial effluents. Br. Phycol. J. 26:99; 1991.Google Scholar
  130. Yamada, T.; Sakai, A. Cryopreservation of cells and tissues using simplified methods. In: Normah, M. N.; Narimah, M. K.; Clyde, M. M., ed. Proceedings of the International Workshop on the In Vitro Conservation of Plant Genetic Resources, July 4–6, 1995. Kuala Lumpur, Malaysia: Universiti Kebangsaan Malaysia Publishers; 1996:89–103.Google Scholar

Copyright information

© Society for In Vitro Biology 1999

Authors and Affiliations

  • John G. Day
    • 1
  • Erica E. Benson
    • 2
  • Roland A. Fleck
    • 1
  1. 1.Culture Collection of Algae and ProtozoaNERC Institute of Freshwater Ecology, Windermere Laboratory, Far SawreyAmblesideUK
  2. 2.Plant Conservation Biotechnology Group, Division of Molecular and Life Sciences, School of Science and EngineeringUniversity of Abertay DundeeDundeeScotland, UK
  3. 3.Department of Soil, Crop and Atmospheric SciencesCornell UniversityIthaca

Personalised recommendations