Effects of exogenous methyl jasmonate in elicited anthocyanin-producing cell cultures of ohelo (Vaccinium phalae)

  • Yimin Fang
  • M. A. L. Smith
  • M. -F. Pépin
Seconday Metabolism


Elicitation of anthocyanin-producing cells of ohelo (Vaccinium pahalae) by both biotic (purified β-glucan and chitosan) and abiotic [sodium ferric ethylenediamine di-(o-hydroxyphenylacetate) FeEDDHA, and CuSO4] elicitors resulted in significant enhancement of anthocyanin accumulation. Anthocyanin production increased up to 1.8 and 1.5-fold over the control in the presence of abiotic elicitors (90 µM FeEDDHA and 20 µM CuSO4, respectively), and increased 1.9 and 1.6-fold in the presence of biotic elicitors (10 mg L−1 β-glucan and 100 mg L−1 chitosan). Maximum anthocyanin production with the two most effective elicitors was achieved when cultures were treated on Day 3 (β-glucan) or Day 0 (FeEDDHA) after the initiation of fresh cell cultures. A concentration-dependent response was exhibited by cultures treated with exogenous methyl jasmonate (MJ). The addition of 0.5 µM MJ alone provoked a 2–3-fold increase in anthocyanin production over that of the control; however, no additive effect on anthocyanin production was observed in any treatments which combined MJ and β-glucan or FeEDDHA. Conditioning of the cells with a preculture in either MJ, β-glucan, or FeEDDHA similarly did not enhance anthocyanin production. Inoculation of cultures elicited by MJ or β-glucan with ibuprofen, a reported inhibitor of jasmonate biosynthesis, dramatically stimulated, rather than inhibited, anthocyanin production, resulting in levels of accumulation beyond any of the tested elicitor combinations. Hypotheses for the observed influence of ibuprofen in this system are discussed.

Key words

signaling compound ibuprofen inhibitor signal transduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldwin, I. T.; Schmelz, E. A.; Zhang, Z.-P. Effects of octadecanoid metabolites and inhibitors on induced nicotine accumulation in Nicotana sylvestris. J. Chem. Ecol. 22:61–74; 1996.CrossRefGoogle Scholar
  2. Blechert, S.; Brodschelm, W.; Holder, S.; Kammerer, L.; Kutchan, T. M.; Mueller, M. J.; Xia, Z.-Q.; Zenk, M. H. The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc. Natl. Acad. Sci. USA 92:4099–4105; 1995.PubMedCrossRefGoogle Scholar
  3. Bohland, C.; Balkenhohl, T.; Loers, G.; Feussner, I.; Grambow, H. J. Differential induction of lipoxygenase isoforms in wheat upon treatment with rust fungus elicitor, chitin oligosaccharides, chitosan, and methyl jasmonate. Plant Physiol. 114:679–685; 1997.PubMedGoogle Scholar
  4. Bostock, R. M.; Laine, R.; Kuc, A. Factors affecting the elicitation of sesquiterpenoid phytoalexin accumulation by eicosapentaenoic and arachidonic acids in potato. Plant Physiol. 70:1417–1424; 1982.PubMedGoogle Scholar
  5. Brooks, C. J. W.; Watson, D. G. Terpenoid phytoalexins. Nat. Prod. Rep. 8:367–389; 1991.PubMedCrossRefGoogle Scholar
  6. Conrath, U.; Domard, A.; Kauss, H. Chitosan-elicited synthesis of callose and of coumarin derivatives in parsley cell suspension cultures. Plant Cell Rep. 8:152–155; 1989.CrossRefGoogle Scholar
  7. Cosio, E. G.; Feger, M.; Miller, C. J. High affinity binding of fungal betaglucan to cell membranes of species of the plant family Fabaceae. Planta 200:92–99; 1996.CrossRefGoogle Scholar
  8. Creelman, R. A.; Tierney, M. L.; Mullet, J. E. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc. Natl. Acad. Sci. USA 89:4938–4941; 1992.PubMedCrossRefGoogle Scholar
  9. DiCosmo, F.; Misawa, M. Eliciting secondary metabolism in plant cell cultures. Trends Biotechnol. 3:318–322; 1985.CrossRefGoogle Scholar
  10. Dittrich, H.; Kutchan, T. M.; Zenk, M. H. The jasmonate precursor, 12-oxophytodienoic acid, induces phytoalexin synthesis in Petroselinum crispum cell cultures. FEBS Lett. 309:33–36; 1992.PubMedCrossRefGoogle Scholar
  11. Doares, S. H.; Syrovets, T.; Weiler, E. W.; Ryan, C. A. Oligogalacturonides and chitosan activate plant defensive genes through the octanoid pathway. Proc. Natl. Acad. Sci. USA 92:4095–4098; 1995.PubMedCrossRefGoogle Scholar
  12. Farmer, E. E.; Johnson, R. R.; Ryan, C. A. Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol. 98:995–1002; 1992.PubMedGoogle Scholar
  13. Franceschi, V. R.; Grimes, H. D. Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc. Natl. Acad. Sci. USA 88:6745–6749; 1991.PubMedCrossRefGoogle Scholar
  14. Francis, F. J. Analysis of anthocyanins. In: Markakis, P., ed. Anthocyanins as food colors. New York: Academic Press; 1982:181–207.Google Scholar
  15. Freund, R. J.; Wilson, W. J. Statistical methods. Revised Edition. New York: Academic Press; 1997.Google Scholar
  16. Gamborg, O.; Miller, R. A.; Ojima, K. Nutrient requirements of suspension-cultures of soybean root cells. Exp. Cell. Res. 50:151–158; 1968.PubMedCrossRefGoogle Scholar
  17. Godoy-Hernández, G.; Loyola-Vargas, V. M. Effect of acetylsalicylic acid on secondary metabolism of Catharanthus roseus tumor suspension cultures. Plant Cell Rep. 16:287–290; 1997.CrossRefGoogle Scholar
  18. Gundlach, H.; Muller, M. J.; Kutchan, T. M.; Zenk, M. H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. USA 89:2389–2393; 1992.PubMedCrossRefGoogle Scholar
  19. Gutierrez, M. C.; Parry, A.; Tena, M.; Jorrin, J.; Edwards, R. Abiotic elicitation of coumarin phytoalexins in sunflower. Phytochemistry 38:1185–1191; 1995.CrossRefGoogle Scholar
  20. Hahlbrock, K.; Scheel, D. Physiology and molecular biology of phenylpropenoid metabolism. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40:347–369; 1989.CrossRefGoogle Scholar
  21. Jahnen, W.; Hahlbrock, K. Cellular localization of nonhost resistance reactions of parsley (Petroselinum crispum) to fungal infection. Planta 173:197–204; 1988.CrossRefGoogle Scholar
  22. Kauss, H.; Jeblick, W.; Domard, A. The degrees of polymerization and N-acetylation of chitosan determine its ability to elicit callose formation in suspension cells and protoplasts of Catharanthus roseus. Planta 178:385–392; 1989.CrossRefGoogle Scholar
  23. Kauss, H.; Jeblick, W.; Ziegler, J.; Krabler, W. Pretreatment of parsley (Petroselinum crispum L.) suspension cultures with methyl jasmonate enhances elicitation of activated oxygen species. Plant Physiol. 105:89–94; 1994.PubMedGoogle Scholar
  24. Lawton, M. A.; Dixon, R. A.; Hahlbrock, K.; Lamb, C. J. Elicitor induction of mRNA activity: rapid effects of elicitor on phenylalanine ammonialyase and chalcone synthase mRNA activities in bean cells. Eur. J. Biochem. 130:131–139; 1983.PubMedCrossRefGoogle Scholar
  25. Lesney, M. S. Growth responses and lignin production in cell suspensions of Pinus elliotii ‘elicited’ by chitin, chitosan or mycelium of Cronartium quercuum f. sp. fusiforme. Plant Cell Tissue Organ Cult. 19:23–31; 1989.CrossRefGoogle Scholar
  26. Lloyd, G.; McCown, B. Commercially-feasible micropropagation of mountain laurel Kalmia latifolia, by use of shoot-tip culture. Proc. Int. Plant Prop. Soc. 30:421–427; 1980.Google Scholar
  27. Mueller, M.; Brodchelm, W.; Spannagl, E.; Zenk, M. H. Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc. Natl. Acad. Sci. USA 90:7490–7494; 1993.PubMedCrossRefGoogle Scholar
  28. Mukundan, U.; Hjortso, M. A. Effect of fungal elicitors on thiophene production in hairy root cultures of Tagetes patula. Appl. Microbiol. Biotechnol. 33:145–147; 1990.CrossRefGoogle Scholar
  29. Nojiri, H.; Sugimori, M.; Yamane, H.; Nishimura, Y.; Yamada, A.; Shibuya, N.; Kodama, O.; Murofushi, N.; Omori, T. Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol. 110:387–392; 1996.PubMedGoogle Scholar
  30. Ohta, H.; Suzuki, G.; Awai, K.; Masuda, T.; Kato, T.; Shibata, D.; Takamiya, K. Distinct pathways for jasmonate- and elicitor-induced expressions of a cytochrome P450 gene in soybean suspension-cultured cells. Physiol. Plant. 100:647–652; 1997.CrossRefGoogle Scholar
  31. Palmer, D. A.; Bender, C. L. Ultrastructure of tomato leaf tissue treated with the pseudomonas phytotoxin cotonatine and comparison with methyl jasmonate. Mol. Plant-Microbe Interact. 8:683–692; 1995.Google Scholar
  32. Park, J. M.; Giles, K.; Songsta, D. D. Industrial production of sanguinarine from cell suspension cultures from Papaver somniverum. Proc. Asia-Pacific Biochem. Eng. Conf. ’90, Kyungju, Korea; 1990:22–25.Google Scholar
  33. Parthier, B.; Bruckner, C.; Dathe, W.; Hause, B.; Herrmann, G. Jasmonates: metabolism, biological activities, and models of action in senescence and stress responses. In: Karssen, C. M.; Van Loon, L. C.; Vreugdenhil, D., ed. Progress in plant growth regulation. Dordrecht: Kluwer Academic Publishers; 1992:276–285.Google Scholar
  34. Peňa-Cortés, H.; Albrecht, T.; Prat, S.; Weiler, E. W.; Willmitzer, L. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191:123–128; 1993.CrossRefGoogle Scholar
  35. Rajendran, L.; Suvarnalatha, G.; Ravishankar, G. A.; Venkataraman, L. V. Enhancement of anthocyanin in callus cultures of Daucus carota L. under the influence of fungal elicitors. Appl. Microbiol. Biotechnol. 42:227–231; 1994.Google Scholar
  36. Rao, S. R.; Sarada, R.; Ravishankar, G. A. Phycocyanin, a new elicitor for capsaicin and anthocyanin accumulation in plant cell culture. Appl. Microbiol. Biotechnol. 46:619–621; 1996.CrossRefGoogle Scholar
  37. Rich, P. R.; Wiegand, N. K.; Blum, H.; Moore, A. L.; Bonner, W. D., Jr. Studies on the mechanism of inhibition of redox enzymes by substituted hydroxamic acids. Biochim. Biophys. Acta 525:325–337; 1978.PubMedGoogle Scholar
  38. Roth, G. J.; Stanford, N.; Majerus, P. W. Acetylation of prostaglandin synthase by aspirin. Proc. Natl. Acad. Sci. USA 72:3073–3076; 1975.PubMedCrossRefGoogle Scholar
  39. Sembdner, G.; Parthier, B. The biochemistry and the physiological and molecular actions of jasmonates. Ann. Rev. Plant Physiol. Plant Mol. Biol. 44:569–589; 1993.CrossRefGoogle Scholar
  40. Schmidt, W. E.; Ebel, J. Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max. Proc. Natl. Acad. Sci. USA 84:4117–4121; 1987.PubMedCrossRefGoogle Scholar
  41. Schweizer, P.; Buchala, A.; Silverman, P.; Seskar, M.; Raskin, I.; Metraux, J.-P. Jasmonate-inducible genes are activated in rice by pathogen attack without a concomitant increase in endogenous jasmonic acid levels. Plant Physiol. 114:79–88; 1997.PubMedGoogle Scholar
  42. Shibli, R.; Smith, M.; Kushad, M. Headspace ethylene accumulation reduced secondary metabolite production in Vaccinium pahalae cell culture. Plant Growth Regulation 23:201–205; 1997.CrossRefGoogle Scholar
  43. Shibuya, Y.; Sugimura, Y.; Tahara, S.; Mizutani, J. Accumulation of isoflavones in lupin seedlings treated with copper chloride. Biosci. Biotechnol. Biochem. 56:690–691; 1992.CrossRefGoogle Scholar
  44. Smith, M. A. L.; Madhavi, D.; Fang, Y.; Tomczak, M. M. Continuous cell culture and product recovery from wild Vaccinium pahalae. J. Plant Physiol. 105:462–466; 1997.Google Scholar
  45. Stafford, H. A. Flavonoid metabolism. Boca Raton, FL: CRC Press, Inc.; 1990:298 p.Google Scholar
  46. Suvarnalatha, G.; Rajendran, L.; Ravishankar, G. A.; Venkataraman L. V. Elicitation of anthocyanin production in cell cultures of carrot (Daucus carota L.) by using elicitors and abiotic stress. Biotechnol. Lett. 16:1275–1280; 1994.Google Scholar
  47. Tamari, G.; Borochov, A.; Atzorn, R.; Weiss, D. Methyl jasmonate induces pigmentation and flavonoid gene expression in petunia corollas: a possible role in wound response. Physiol. Plant. 94:45–50; 1995.CrossRefGoogle Scholar
  48. Tyler, R. T.; Eilert, U.; Rijnders, C. O. M.; Roewe, I. A.; McNabb, C. K.; Kurz, W. G. W. Studies on benzophenanthridine alkaloid production in elicited cell cultures of Papaver somniferum L. In: Kurz, W. G. W., ed. Primary and secondary metabolism of plant cell cultures. Berlin: Springer-Verlag; 1989:200–207.Google Scholar
  49. Van der Salm, T.; Van der Toorn, C.; Hänisch ten Cate, C.; Dubois, L.; De Vries, D.; Dons, H. Importance of the iron chelate formula for micropropagation of Rosa hybrida L. ‘Moneyway’. Plant Cell Tissue Organ Cult. 37:73–77; 1994.CrossRefGoogle Scholar
  50. Vidal, S.; Leon, I.; Denecke, J.; Palva, E. T. Salicylic acid and the plant pathogen Erwinia carotovora induce defense genes via antagonistic pathways. Plant J. 11:115–123; 1997.CrossRefGoogle Scholar
  51. Weiler, E. W. Octadecanoid-mediated signal transduction in higher plants. Naturwissenschaften 84:340–349; 1997.CrossRefGoogle Scholar
  52. Wojtaszek, P.; Stobiecki, M. Differential secretion and accumulation of isoflavonoids in Lupinus albus in response to fungal elicitor and CuCl2. Plant Physiol. Biochem. 35:129–135; 1997.Google Scholar
  53. Yoshikawa, M. Diverse modes of action of biotic and abiotic phytoalexin elictors. Nature (Lond.) 275:546–547; 1978.CrossRefGoogle Scholar
  54. Yoshikawa, M.; Yamaoka, N.; Takeuchi, Y. Elicitors: their significance and primary modes of action in the induction of plant defense reactions. Plant Cell Physiol. 34:1163–1173; 1993.Google Scholar
  55. Yukimune, Y.; Tabata, H.; Higashi, Y.; Hara, Y. Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat. Biotechnol. 14:1129–1132; 1996.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 1999

Authors and Affiliations

  • Yimin Fang
    • 1
  • M. A. L. Smith
    • 1
  • M. -F. Pépin
    • 1
  1. 1.Department of Natural Resources and Environmental SciencesUniversity of IllinoisUrbana

Personalised recommendations