Effects of medium components and light on callus induction, growth, and frond regeneration in Lemna gibba (Duckweed)

  • H. K. Moon
  • A. M. Stomp
Developmental Biology/Morphogenesis


Basal media, plant growth regulator type and concentration, sucrose, and light were examined for their effects on duckweed (Lemna gibba) frond proliferation, callus induction and growth, and frond regeneration. Murashige and Skoog medium proved best for callus induction and growth, while Schenk and Hildebrandt medium proved best for frond proliferation. The ability of auxin to induce callus was associated with the relative strength of the four auxins tested, with 20 or 50 µM 2,4-dichlorophenoxyacetic acid giving the highest frequency (10%) of fronds producing callus. Auxin combinations did not improve callus induction frequency. Auxin in combination with other plant growth regulators was needed for long-term callus growth; the two superior plant growth regulator combinations were 10 µM naphthaleneacetic acid, 10 µM gibberellic acid, and 2 µM benzyladenine with either 1 or 20 µM 2,4-dichlorophenoxyacetic acid. Three percent sucrose was best for callus induction and growth. Callus induction and growth required light. Callus that proliferated from each frond’s meristematic zone contained a mixture of dedifferentiated and somewhat organized cell masses. Continual callus selection was required to produce mostly dedifferentiated, slow-growing callus cell lines. Frond regeneration occurred on Schenk and Hildebrandt medium without plant growth regulators but was promoted by 1 µM benzyladenine. Callus maintained its ability to regenerate fronds for at least 10 mo. Regenerated fronds showed a slower growth rate than normal fronds and a low percentage of abnormal morphologies that reverted to normal after one or two subcultures.

Key words

tissue culture plant growth regulators media light sucrose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adda, S.; Reddy, T. P.; Kavi Kishor, P. B. Somatic embryogenesis and organogenesis in Guitzotia abyssinica. In Vitro Cell. Dev. Biol. 30P:104–107; 1994.Google Scholar
  2. Ahloowalia, B. S. Forage grasses. In: Ammirato, P. V.; Evans, D. A.; Sharp, W. R., et al. eds. Handbook of plant cell culture. Volume 3. New York: Macmillan Publishing Co.; 1984:91–125.Google Scholar
  3. Ashby, E.; Wangermann, E.; Winter, E. J. Studies in the morphogenesis of leaves. III. Preliminary observations on vegetative growth in Lemna minor. New Phytol. 49:374–381; 1948.Google Scholar
  4. ASTM, American Society for Testing Materials. Standard guide for conducting static toxicity tests with Lemna gibba G3.E1415-91. ASTM Annual Book of Standards. Volume 11.04. Philadelphia, PA. 1991.Google Scholar
  5. Chang, W. C.; Chiu, P. L. Induction of callus from fronds of duckweed (Lemna gibba L.). Bot. Bull. Academia Sinica 17:106–109; 1976.Google Scholar
  6. Chang, W. C.; Chiu, P. L. Regeneration of Lemna gibba G3 through callus culture. Z. Pflanzenphysiol. Bd. 89.S:91–94; 1978.Google Scholar
  7. Chang, W. C.; Hsing, Y. I. Callus formation and regeneration of frond-like structures in Lemna perpusilla 6746 on a defined medium. Plant Sci. Lett. 13:133–136; 1978.CrossRefGoogle Scholar
  8. Crawford, D. J.; Landolt, E. Allozymic studies in Spirodela (Lemnaceae): variation among conspecific clones and divergence among species. Syst. Bot. 10:389–394; 1993.CrossRefGoogle Scholar
  9. Crombie, L.; Heavers, A. D. Synthesis of an allelopathic cyclopentenone from Lemna trisulca. J. Chem. Soc. Perkin Trans. 1:2685–2687; 1992.Google Scholar
  10. Cui, Y. B.; Chen, S. L.; Wang, S. M. Effect of ration size on the growth and energy budget of the grass carp, Ctenopharyngodon idella Val. Aquaculture 123:95–107; 1994.CrossRefGoogle Scholar
  11. Dewanji, A. Amino acid composition of leaf proteins extracted from some aquatic weeds. J. Agric. Food Chem. 41:1232–1236; 1993.CrossRefGoogle Scholar
  12. Gamborg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158; 1968.PubMedCrossRefGoogle Scholar
  13. Haustein, A. T.; Gilman, R. H.; Skillicorn, P. W., et al. Performance of broiler chickens fed diets containing duckweed (Lemna gibba). J. Agric. Sci. 122:285–289; 1994.Google Scholar
  14. Holst, R. W.; Ellwanger, T. C. Pesticide assessment guidelines, subdivision J hazard evaluation: nontarget plant. EPA-540/9-82- 020; Washington, DC: Government Printing Office; 1982.Google Scholar
  15. Jenner, H. A.; Janssen-Mommen, J. P. M. Duckweed Lemna minor as a tool for testing toxicity of coal residues and polluted sediments. Archives Environ. Contam. Toxicol. 25:3–11; 1993.Google Scholar
  16. Kaihara, S.; Takimoto, A. A flower-inducing substance derived from norepinephrine upon contact with intact Lemna plants. Plant Cell Physiol. 32:1107–1109; 1991.Google Scholar
  17. Landolt, E.; Kandeler, R. The family of Lemnaceae, a monographic study. Volume 2 of the monograph: phytochemistry; physiology; application; bibliography. Zurich, Switzerland: Veroffentlichungen des Geobotanischen Institutes ETH, Stiftung Ruebel; 1987.Google Scholar
  18. McClure, J. W.; Alston, R. E. A chemotaxonomic study of Lemnaceae. Am. J. Bot. 53:849–860; 1966.PubMedCrossRefGoogle Scholar
  19. Mehta, U. J.; Hazra, S.; Mascarenhas, A. F. Somatic embryogenesis and in vitro flowering in Brassica nigra. In Vitro Cell. Dev. Biol. 29P:1–4; 1993.Google Scholar
  20. Mesmar, M. N.; Abussaud, M. The antibiotic activity of some aquatic plants and algal extracts from Jordan. Qatar Univ. Sci. J. 11:155–160; 1991.Google Scholar
  21. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–496; 1962.CrossRefGoogle Scholar
  22. Nitsch, J. P.; Nitsch, C. Haploid plants from pollen grains. Science 163:85–87; 1969.CrossRefPubMedGoogle Scholar
  23. Oron, G.; De-Vegt, A.; Porath, D. Nitrogen removal and conversion by duckweed grown on wastewater. Water Res. 22:179–184; 1988.CrossRefGoogle Scholar
  24. Rogers, S. M. D. Culture phenotype effects on regeneration capacity in the monocot Haworthia comptoniana. In Vitro Cell. Dev. Biol. 29P:9–12; 1993.Google Scholar
  25. Rokonuddin, A.; Kabirullah, M.; Khan, S. A., et al. Preparation of poultry feed for starters using duckweeds and mixed pulses. Bangladesh J. Sci. Ind. Res. 28:33–37; 1993.Google Scholar
  26. Schenk, R. U.; Hildebrandt, A. C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50:199–204; 1972.Google Scholar
  27. Sharpe, W. R.; Evans, D. A.; Ammirato, P. V., et al., eds. Handbook of plant cell culture. Volume 2. Crop species. New York: Macmillan Publishing Co.; 1984:69–136.Google Scholar
  28. Silverthorne, J. Post-transcriptional regulation of organ-specific expression of individual rbcS mRNAs in Lemna gibba. Plant Cell 2:1181–1190; 1990.PubMedCrossRefGoogle Scholar
  29. Slovin, J. P.; Cohen, J. D. Levels of indole-3-acetic acid in Lemna gibba G3 and in a large Lemna mutant regenerated from tissue culture. Plant Physiol. 86:522–526; 1988.PubMedCrossRefGoogle Scholar
  30. Urbanska-Worytkiewicz, K. Cytological variation within the family of Lemnaceae. Veroff. Geobot. Inst. Eidg. Tech. Hochsch. Stift. Ruebel Zuer. 70:30–101; 1980.Google Scholar

Copyright information

© Society for In Vitro Biology 1997

Authors and Affiliations

  • H. K. Moon
    • 1
  • A. M. Stomp
    • 2
  1. 1.Institute of Forest GeneticsSuwon KyonggidoRepublic of Korea
  2. 2.Forestry DepartmentNorth Carolina State UniversityRaleigh

Personalised recommendations