Advertisement

Identification and quantitative determination of feruloyl-glucoside from hairy root cultures of Turbinicarpus lophophoroides (Werderm.) Buxb. & Backeb. (Cactaceae)

  • 17 Accesses

Abstract

Transformed hairy root cultures have become an alternative for the biosynthesis of plant secondary metabolites with biological activities. In this present work, the effects of liquid Murashige and Skoog (MS) and Gamborg B5 (B5) medium on kinetic behavior, biomass and phenolic metabolite production were analyzed in Turbinicarpus lophophoroides (Werderm.) Buxb. & Backeb. hairy root cultures. Liquid MS medium showed the highest biomass production (13.67 g L−1 dry weight) after 77 d of culture. For B5 medium, highest biomass was achieved sooner, at day 56, but with lower total biomass (8.10 g L−1 dry weight). After isolation, structural elucidation of the major compound present in T. lophophoroides hairy roots was determined by nuclear magnetic resonance and mass spectral analysis. As a result, a ferulic acid derivative (feruloyl-glucoside) was isolated from T. lophophoroides hairy roots and reported for the first time. Quantitative analysis indicated that feruloyl-glucoside was the major phenolic metabolite at 56 d of growth in MS medium (2.7267 ± 0.041 mg g−1 dry weight L−1) and at 7 and 35 d in B5 medium (2.6328 ± 0.108 and 2.4372 ± 0.026 mg g−1 dry weight L−1, respectively). The feruloyl-glucoside was not detected in untransformed roots (control). The present results suggested the potential of T. lophophoroides hairy roots culture for the production of this phenolic glycoside.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

References

  1. Abu-Reidah IM, Arráez-Román D, Quirantes-Piné R, Fernández-Arroyo S, Segura-Carretero A, Fernández-Gutiérrez A (2012) HPLC–ESI-Q-TOF-MS for a comprehensive characterization of bioactive phenolic compounds in cucumber whole fruit extract. Food Res Int 46:108–117

  2. Astello-García MG, Cervantes I, Nair V, Santos-Díaz MS, Reyes-Agüero A, Guéraud F, Negre-Salvayre A, Rossignol M, Cisneros-Zevallos L, Barba de la Rosa AP (2015) Chemical composition and phenolic compounds profile of cladodes from Opuntia spp. cultivars with different domestication gradient. J Food Compos Anal 43:119–130

  3. Bokern M, Wray V, Strack D (1991) Accumulation of phenolic acid conjugates and betacyanins, and changes in the activities of enzymes involved in feruloylglucose metabolism in cell-suspension cultures of Chenopodium rubrum L. Planta 184:261–270

  4. Chougui N, Djerroud N, Naraoui F, Hadjal S, Aliane K, Zeroual B, Larbat R (2015) Physicochemical properties and storage stability of margarine containing Opuntia ficus-indica peel extract as antioxidant. Food Chem 173:382–390

  5. Dubois M, Gilles A, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substantes. Anal Chem 28:350–356

  6. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

  7. Georgiev MI, Agostini E, Ludwig-Muller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30:528–537

  8. Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175

  9. Gómez-Aguirre YA, Zamilpa A, González-Cortazar M, Trejo-Tapia G (2012) Adventitious root cultures of Castilleja tenuiflora Benth. as a source of phenylethanoid glycosides. Ind Crop Prod 36:188–195

  10. Hamada K, Tsutsumi Y, Yamauchi K, Fukushima K, Nishida T (2003) Treatment of poplar callus with ferulic and sinapic acids I: incorporation and enhancement of lignin biosynthesis. J Wood Sci 49:333–338

  11. Jiménez-Aspee F, Quispe C, Soriano MPC, Fuentes Gonzalez J, Hüneke E, Theoduloz C, Schmeda-Hirschmann G (2014) Antioxidant activity and characterization of constituents in copao fruits (Eulychnia acida Phil., Cactaceae) by HPLC–DAD–MS/MSn. Food Res Int 62:286–298

  12. Kim JW, Kim TB, Yang H, Sung SH (2016) Phenolic compounds isolated from Opuntia ficus-indica fruits. Nat Prod Sci 22:117–121

  13. Kovács Z, Dinya Z (2000) Examination of non-volatile organic compounds in red wines made in Eger. Microchem J 67:57–62

  14. Lin LZ, Harnly JM (2010) Phenolic component profiles of mustard greens, yu choy, and 15 other Brassica vegetables. J Agric Food Chem 58:6850–6857

  15. Lucini L, Rocchetti G, Kane D, Trevisan M (2017) Phenolic fingerprint allows discriminating processed tomato products and tracing different processing sites. Food Control 73:696–703

  16. Ludwig-Muller J, Jahn L, Lippert A, Puschel J, Walter A (2014) Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications. Biotechnol Adv 32:1168–1179

  17. Madala NE, Steenkamp PA, Piater LA, Dubery IA (2014) Metabolomic insights into the bioconversion of isonitrosoacetophenone in Arabidopsis thaliana and its effects on defense-related pathways. Plant Physiol Biochem 84:87–95

  18. Matkowski A (2008) Plant in vitro culture for the production of antioxidants - a review. Biotechnol Adv 26:548–560

  19. Mehrotra S, Srivastava V, Ur Rahman L, Kukreja AK (2015) Hairy root biotechnology--indicative timeline to understand missing links and future outlook. Protoplasma 252:1189–1201

  20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

  21. Palomeque-Carlín A, Tafoya F, Alpuche Solís AG, Pérez-Molphe-Balch E (2015) Effects of different culture media and conditions on biomass production of hairy root cultures in six Mexican cactus species. In Vitro Cell Dev Biol–Plant 51:332–339

  22. Pérez-Ilzarbe J, Hernández T, Estrella I (1991) Phenolic compounds in apples: varietal differences. Z Lebensm Unters Forsch 192:551–554

  23. Pérez-Molphe-Balch E, Santos-Díaz MS, Ramírez-Malagón R, Ochoa-Alejo N (2015) Tissue culture of ornamental cacti. Sci Agric 72:540–561

  24. Russowski D, Maurmann N, Rech SB, Fett-Neto AG (2006) Role of light and medium composition on growth and valepotriate contents in Valeriana glechomifolia whole plant liquid cultures. Plant Cell Tissue Organ Cult 86:211–218

  25. Semarnat (2010) Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. NOM-059-SEMARNAT-2010. Diario oficial de la federación, México, pp. 1–78

  26. Smith M, Fitz Maurice WA, Fitz Muarice B, Sotomayor M (2013) Turbinicarpus lophophoroides, Biznaguita. The IUCN red list of threatned species, 10.2305/IUCN.UK.2013-1.RLTS.T40981A2949100.en. Accessed 6/29/18

  27. Štarha R, Chybidziurová A, Lacný Z (1999) Alkaloids of the genus Turbinicarpus (Cactaceae). Biochem Syst Ecol 27:839–841

  28. Tang X, Olatunji OJ, Zhou Y, Hou X (2017) Allium tuberosum: antidiabetic and hepatoprotective activities. Food Res Int 102:681–689

  29. Tanimoto S, Tominaga H, Okada Y, Nomura K (2006) Synthesis and cosmetic whitening effect of glycosides derived from several phenylpropanoids. Yakugaku Zasshi 126:173–177

  30. Trejo-Moreno C, Méndez-Martínez M, Zamilpa A, Jimenez-Ferrer E, Perez-Garcia MD, Medina-Campos ON, Pedraza-Chaverri J, Santana MA, Esquivel-Guadarrama FR, Castillo A, Cervantes-Torres J, Fragoso G, Rosas-Salgado G (2018) Cucumis sativus aqueous fraction inhibits angiotensin II-induced inflammation and oxidative stress in vitro. Nutrients 10:1–14

  31. Villaseñor JL (2016) Checklist of the native vascular plants of Mexico. Rev Mex Biodivers 87:559–902

  32. Wagner H, Bladt S (1996) Plant drug analysis: a thin layer cromatography atlas. Springer, Berlin

  33. Weremczuk-Jeżyna I, Grzegorczyk-Karolak I, Frydrych B, Krolicka A, Wysokińska H (2013) Hairy roots of Dracocephalum moldavica: rosmarinic acid content and antioxidant potential. Acta Physiol Plant 35:2095–2103

  34. Wu CH, Dewir YH, Hahn EJ, Paek KY (2006) Optimization of culturing conditions for the production of biomass and phenolics from adventitious roots of Echinacea angustifolia. Journal of Plant Biology 49:193–199

Download references

Author information

Correspondence to Yenny A Gómez-Aguirre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Praveen Saxena

Electronic supplementary material

Figure S1.
figure6

Full mass spectrometry scan data in negative ion mode of Peak 1 (m/z 355.1) of Turbinicarpus lophophoroides (Werderm.) Buxb. & Backeb. hairy roots cultures grown in liquid Murashige and Skoog (MS; Murashige and Skoog 1962) at 56 d (exponential growth phase) (PNG 111 kb)

High resolution image (EPS 14.2 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solis-Castañeda, G.J., Zamilpa, A., Cabañas-García, E. et al. Identification and quantitative determination of feruloyl-glucoside from hairy root cultures of Turbinicarpus lophophoroides (Werderm.) Buxb. & Backeb. (Cactaceae). In Vitro Cell.Dev.Biol.-Plant (2020). https://doi.org/10.1007/s11627-019-10029-z

Download citation

Keywords

  • Nuclear magnetic resonance (NMR)
  • Phenolic glycosides
  • Phytochemical analysis
  • Secondary metabolites
  • Ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS)