Advertisement

In vitro germination and seedling development of two European orchid species, Himantoglossum jankae Somlyay, Kreutz & Óvári and Spiranthes spiralis (L.) Chevall.

  • Jovana Dulić
  • Mirjana Ljubojević
  • Vladislav Ognjanov
  • Goran Barać
  • Tamara DulićEmail author
Micropropagation
  • 272 Downloads

Abstract

New protocols for successful asymbiotic seed germination of two European orchid species, Himantoglossum jankae Somlyay, Kreutz & Óvári and Spiranthes spiralis (L.) Chevall., were established in this study. The influence of two basal media, organic supplements, illumination, and cytokinins on germination, protocorm formation, and seedling development was examined. A strong species-specific dependence on illumination conditions and nutrient medium composition was observed. Improved germination under continual darkness indicated that H. jankae had negatively photoblastic seeds, while S. spiralis seeds could germinate under both light conditions examined in this study, but slightly faster development was achieved under the 16-h photoperiod protocol. The H. jankae seeds cultured on Knudson C medium failed to germinate in any medium combination, irrespective of the organic supplement use. The highest germination rate of H. jankae was achieved on Malmgren medium supplemented with coconut water, peptone, and L-glutamine, indicating that germination of this species was amino acid–dependent. Although S. spiralis seeds germinated on all medium combinations, Knudson C basal medium (without supplements) yielded better results when compared with the Malmgren medium. The best S. spiralis seedling development was achieved on the medium supplemented with 6-(γ,γ-dimethylallylamino) purine, while the cytokinin 6-benzyladenine promoted H. jankae seedling development. With the implementation of these protocols, well-developed seedlings were acclimatized to greenhouse conditions after 7 mo in culture.

Keywords

Asymbiotic seed germination Illumination Nutrient requirements Orchid conservation Protocorm formation 

Notes

Funding information

This research was supported by the project entitled “Improvement of agricultural production in Vojvodina (Serbia) in accordance with EU Regulations.”

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Anjah GM, Focho DA, Annih MG, Kum CK (2003) Effect of regulating the red/far-red light ratios by shading on seedlings of Milicia excelsa and Nauclea diderrichii. WWW J Bio 8:4 (http://www.epress.com/w3jbio/vol8.htm)Google Scholar
  2. Arditti J (1967) Factors affecting the germination of orchid seed. Bot Rev 33:1–97CrossRefGoogle Scholar
  3. Arditti J, Michaud JD, Oliva AP (1981) Seed germination of North American orchids. I. Native California and related species of Calypso, Epipactis, Goodyera, Piperia, and Platanthera. Bot Gaz 142:442–453CrossRefGoogle Scholar
  4. Bateman RM, Molnár AV, Sramko G (2017) In situ morphometric survey elucidates the evolutionary systematics of the Eurasian Himantoglossum clade (Orchidaceae: Orchidinae). Peer J.  https://doi.org/10.7717/peerj.2893
  5. Bournérias M, Prat D (eds) (2005) Les Orchidées de France, Belgique et Luxembourg, deuxième édition. Biotope, MèzeGoogle Scholar
  6. Bozdemir H, Cig A, Turkoglu N (2018) Effects of different concentrations of carbohydrate form on Orchis Sancta L. propagation in vitro. Appl Ecol Environ Res 16:4849–4864CrossRefGoogle Scholar
  7. Chase MW, Barrett RL, Cameron KM, Freudenstein JV (2003) DNA data and Orchidaceae systematics: a new phylogenetic classification. In: Dixon KM, Kell SP, Barrett RL, Cribb PJ (eds) Orchid conservation. Natural History Publications, Kota Kinabalu, pp 69–89Google Scholar
  8. Chen Y, Goodale U, Fan HL, Gao JY (2015) Asymbiotic seed germination and in vitro seedling development of Paphiopedilum spicerianum: an orchid with an extremely small population in China. GlobEcol Conserv 3:367–378Google Scholar
  9. Cocucci A, Jensen WA (1969) Orchid embryology: megagametophyte of Epidendrum scutella following fertilization. Am J Bot 56:629–640CrossRefGoogle Scholar
  10. Curtis JT (1947) Studies on the nitrogen nutrition of orchid embryos. I. Complex nitrogen sources. Am Orchid Soc Bull 16:654–660Google Scholar
  11. De Pauw MA, Remphrey WR, Palmer CE (1995) The cytokinin preference for in vitro germination and protocorm growth of Cypripedium candidum. Ann Bot 75:267–275CrossRefGoogle Scholar
  12. Decruse SV, Reny N, Shylajakumati S, Krishnan PN (2013) In vitro propagation and field estimation of Eulophia cullenii (Wight) Bl., a critically endangered orchid of Western Ghats, India through culture of seeds and axenic seedling-derived rhizomes. In Vitro Cell Dev Biol–Plant 49:520–528CrossRefGoogle Scholar
  13. Delforge P (1995) Orchids of Britain & Europe. HarperCollins, LondonGoogle Scholar
  14. Diengdoh RV, Kumaria A, Tandon P, Chettri Das M (2017) Asymbiotic germination and seed storage of Paphiopedilum insigne, an endangered lady’s slipper orchid. S Afr J Bot 112:215–224CrossRefGoogle Scholar
  15. Dressler R (1993) Phylogeny and classification of the orchid family. Dioscorides Press, PortlandGoogle Scholar
  16. Fukai S, Fujiwara K, Okamoto O, Hasegawa A, Goi M (1997) Effects of red and blue light on germination and protocorm growth of Calanthe Satsuma. Lindleyana 12:169–171Google Scholar
  17. GIROS (2009) Orchidee d’Italia. Castello srl, MilanoGoogle Scholar
  18. Godo T, Komori M, Nakaoki YT, Miyoshy K (2010) Germination of mature seeds of Calanthe tricarinata Lindl., an endangered terrestrial orchid, by asymbiotic culture in vitro. In Vitro Cell Dev Biol–Plant 46:323–328CrossRefGoogle Scholar
  19. Gupta A (2016) Asymbiotic seed germination in orchids: role of organic additives. Interantional Advanced Research in Science Eng Technol 3:143–147Google Scholar
  20. Harrap A, Harrap S (2009) Orchids of Britain and Ireland a field and site guide. A&C Black Publishers Ltd., LondonGoogle Scholar
  21. Huh YS, Lee JK, Nam SY, Paek KY, Suh GU (2016) Improvement of asymbiotic seed germination and seedling development of Cypripedium macranthos Sw. with organic additives. J Plant Biotechnol 43:138–145CrossRefGoogle Scholar
  22. Jacquemyn H, Hunchinhs M (2010) Biological Flora of the British Isles: Spiranthes spiralis (L.) Chevall. J Ecol 98:1253–1267CrossRefGoogle Scholar
  23. Jiang H, Chen MG, Lee YI (2017) In vitro germination and low-temperature seed storage of Cyperdium lentiginosum P.J. Crinn & S.C. Chen, a rare and endangered lady’s slipper orchid. Sci Hortic 225:471–479CrossRefGoogle Scholar
  24. Johnson TR, Kane ME, Perez HE (2011) Examining the interaction of light, nutrients and carbohydrates on seed germination and early seedling development of Bletia purpurea (Orchidaceae). Plant Growth Regul 63:89–99.  https://doi.org/10.1007/s10725-010-9516-3 CrossRefGoogle Scholar
  25. Kauth PJ (2005) In vitro seed germination and seedling development of Calopogon tuberosus and Sacoila lanceolata var. lanceolata: two Florida native terrestrial orchids. MS thesis. University of Florida http://etd.fcla.edu/UF/UFE0011381/kauth_p.pdf. Accessed August 2017
  26. Kauth PJ, Dutra D, Johnson TR, Stewart SL, Kane ME, Vendrame W (2008) Techniques and applications of in vitro orchid seed germination. Global Sci Books 5:375–391Google Scholar
  27. Kauth PJ, Vendrame WA, Kane ME (2006) In vitro seed culture and seedlings development of Calopogon tuberosus. Plant Cell Tissue Organ Cult 85:91–102.  https://doi.org/10.1007/s11240-005-9055-1 CrossRefGoogle Scholar
  28. Kende H, Zeevaart J (1997) The five “classical” plant hormones. Plant Cell 9:1197–1210CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kendrick RE (1976) Photocontrol of seed germination. Sci Prog Oxford 63:347–367Google Scholar
  30. Khampa S, Wangsomnuk P (2010) Factors affecting seed germination of Grammatophylum speciosum cultured in vitro. Asia-Pacific J Molec Biol Biotechnol 18:193–197Google Scholar
  31. KitsakI CK, Zygouraki S, Ziobora M, Kintzios S (2004) In vitro germination, protocorm formation and plantlet development of mature versus immature seeds from several Ophrys species (Orchidaceae). Plant Cell Rep 23:284–290CrossRefPubMedGoogle Scholar
  32. Knudson L (1922) Nonsymbiotic germination of orchid seed. Bot Gaz 73:1–25CrossRefGoogle Scholar
  33. Knudson L (1946) A new nutrient solution for the germination of orchid seed. Am Orchid Soc Bull 15:214–217Google Scholar
  34. Lang D (2004) Britain’s orchids: a guide to the identification and ecology of the wild orchids of Great Britain and Ireland. Wild Guides Ltd. OldBasing, UKGoogle Scholar
  35. Lucksom SZ (2007) The orchids of Sikkim and North-east Himalaya. Author Publishers and Distributors, GangtokGoogle Scholar
  36. Lugo Lugo H (1955) Effects of nitrogen on the germination of Vanilla planifolia. Am J Bot 42:679–684CrossRefGoogle Scholar
  37. Mahendran G, Muniappan V, Ashwini M, Muthukumar T, NarmathaBai V (2013) Asymbiotic seed germination of Cymbidium bicolor Lindl. (Orchidaceae) and the influence of mycorrhizal fungus on seedling development. Acta Physiol Plant 35:829–840CrossRefGoogle Scholar
  38. Malmgren S (1996) Orchid propagation. Theory and practice. In: Allen C (ed) North American native terrestrial orchids. Propagation and production. N Am Native Terrestrial Orchid Conf Proc. C. Allen, Germantown, pp 63–71Google Scholar
  39. McKinley T, Camper ND (1997) Action spectra of in vitro asymbiotic germination of Goodyera repens var. ophioides. Lindleyana 12:30–33Google Scholar
  40. Miyoshi K, Mii M (1995) Phytohormone pretreatment for the enhancement of seed germination and protocorm formation by the terrestrial orchid, Calanthe discolor (Orchidaceae), in asymbiotic culture. Sci Horticul 63:263–267CrossRefGoogle Scholar
  41. Miyoshi K, Mii M (1998) Stimulatory effects of sodium and calcium hypochlorite, pre-chilling and cytokinins on the germination of Cypripedium macranthos seed in vitro. Physiol Plant 102:481–486CrossRefGoogle Scholar
  42. Molnár AV, Kreutz K, Óvári M, Sennikov AN, Bateman RM, Takács A, Somlyay L, Sramkó G (2012) Himantoglossum jankae (Orchidaceae: Orchideae), a new name for a long misnamed lizard orchid. Phytotaxa 73:8–12CrossRefGoogle Scholar
  43. Nanekar V, Shriram V, Kumar V, Kishor K (2014) Asymbiotic in vitro seed germination and seedling development of Eulophia nuda Lindl., an endangered medicinal orchid. Proc Nat Acad Sci Biol Sci India July – Sept 84:837–846Google Scholar
  44. Pignatti S (1982) Flora d’Italia, vol 3. Spain, EdagricoleGoogle Scholar
  45. Ponert J, Figura T, Vosolsobe S, Lipavska H, Vohnik M, Jersakova J (2013) Asymbiotic germination of mature seeds and protocorm development of Pseudorchis albida (Orchidaceae) are inhabited by nitrates even at extremely low concentrations. Botany 91:662–670CrossRefGoogle Scholar
  46. Ponert J, Vosolsobe S, Kmecova K, Lipavska H (2011) European orchid cultivation – from seed to mature plant. Eur J Environ Sci 1:95–107Google Scholar
  47. Quiroz K, Saavedera J, Hermine V, Verdugo G, Caligari P, Garcia-Gonzales R (2017) In vitro asymbiotic germination for micropropagation of the recalcitrant terrestrial orchid Chloraea crispa (Orchidaceae). Appl Plant Sci 5:1600142CrossRefGoogle Scholar
  48. Rasmussen HN (1995) Terrestrial orchids, from seed to mycotrophic plant. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  49. Rasmussen HN, Rasmussen FN (1991) Climactic and seasonal regulation of seed plant establishment in Dactylorhiza majalis inferred from symbiotic experiments in vitro. Lindleyana 5:221–227Google Scholar
  50. Roberts DL, Dixon KW (2008) Orchids. Curr Biol 18:325–329CrossRefGoogle Scholar
  51. Rossi W (2002) Orchidee d’Italia. Ministero dell’ambiente e della tutela del territorio, Direzione conservazione della natura: Istituto nazionale per la fauna selvatica, BolognaGoogle Scholar
  52. Sazak A, Ozdenes Y (2006) Symbiotic and asymbiotic germination of endangered Spiranthes spiralis (L.) Chevall. And Dactylorhiza osmanica (Kl.) Soo. Var. Osmanica (endemic). Pak J Biol Sci 9:2222–2228CrossRefGoogle Scholar
  53. Seaton P, Hu H, Pewrner H, Pritchard H (2010) Ex situ conservation of orchids in a warming world. Bot Rev 76:193–120CrossRefGoogle Scholar
  54. Sgarbi E, Grimaudo M, Del Prete C (2009) In vitro asymbiotic germination and seedling development of Limodorum abortivum (Orchidaceae). Plant Biosys 143:114–119CrossRefGoogle Scholar
  55. Sharma J, Zettler LW, Van Sambeek JW, Ellersieck MR, Starbuck CJ (2003) Symbiotic seed germination and mycorrhizae of federally threatened Platanthera praeclara (Orchidaceae). Am Midland Nat 149:104–120CrossRefGoogle Scholar
  56. Spoerl E, Curtis JT (1948) Studies of the nitrogen nutrition of orchid embryos. III. Amino acid nitrogen. Am Orchid Soc Bull 17:307–312Google Scholar
  57. Stenberg ML, Kane ME (1998) In vitro seed germination and greenhouse cultivation of Encyclia boothiana var. erythronioides, an endangered Florida orchid. Lindleyana 13:101–112Google Scholar
  58. Stewart S, Kane M (2006) Asymbiotic seed germination and in vitro seedling development of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell Tissue Organ Cult 86:147–158CrossRefGoogle Scholar
  59. Stewart SL, Kane EM (2007) Simbiotic seed germination and evidence for in vitro mycobiont specificity in Spiranthes brevilabris (Orchidaceae) and its implications for species-level conservation. In Vitro Cell Dev Biol―Plant 43:178–186CrossRefGoogle Scholar
  60. Stewart SL, Zettler LW (2002) Symbiotic germination of three semi-aquatic rein orchids (Habeneria repens, H. quinqueseta, H. macroceratitis) from Florida. Aquat Bot 72:25–35CrossRefGoogle Scholar
  61. Stoutamire W (1964) Seeds and seedlings of native orchids. Mich Bot 3:107–119Google Scholar
  62. Stoutamire W (1974) Terrestrial orchid seedling. In: Withner CL (ed) The orchids: scientific studies. Wiley-Interscience, New York, pp 101–128Google Scholar
  63. Tavares A, Young JL, Kanashiro OS, Lima G, Chu E, Suzuki R (2012) Orchid in vitro growth as affected by nitrogen levels in the culture medium. Hortic Bras 30:119–124CrossRefGoogle Scholar
  64. Vakhrameeva MG, Tatarenko IV, Zagulskii MN VGK (2008) Orchids of Russia and adjacent countries (within the borders of the former USSR). A. R. G. Gantner Verlag, RuggellGoogle Scholar
  65. Van Waes J (1984) In vitro studie van de kiemingsfysiologie van Westeuropese orchideeen. Thesis, Rijkuniversiteit Gent http://hdl.handle.net/1854/LU-8536673
  66. Vejsadova H (2006) Factors affecting seed germination and seedling growth of terrestrial orchid cultured in vitro. Acta Biol Crac 48:109–113Google Scholar
  67. Vellupillai M, Swarup S, Goh CJ (1997) Histological and protein changes during early stages of seed germination in the orchid Dendrobium crumenatum. J Hortic Sci Biotechnol 76:941–948CrossRefGoogle Scholar
  68. Yong J, Ge L, Ng J, Tan S (2009) The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules 14:5144–5164CrossRefPubMedPubMedCentralGoogle Scholar
  69. Znaneicka J, Krolicka A, Sidwa-Groycka M, Rybczynski J, Szlachetko D, Lojkowska E (2005) Asymbiotic germination, seedling development and plantlet propagation of Encyclia AFF. oncidioides – an endangered orchid. Acta Soc Bot Poloniae 74:193–198Google Scholar
  70. Znaniecka J, Lojkowska E (2004) Establishment of in vitro culture collection of endangered European orchids. Bull Bot Gard 13:69–73Google Scholar

Copyright information

© The Society for In Vitro Biology 2019

Authors and Affiliations

  • Jovana Dulić
    • 1
  • Mirjana Ljubojević
    • 1
  • Vladislav Ognjanov
    • 1
  • Goran Barać
    • 1
  • Tamara Dulić
    • 2
    • 3
    Email author
  1. 1.Faculty of Agriculture, Department of Fruit Growing, Viticulture, Horticulture and Landscape ArchitectureUniversity of Novi SadNovi SadSerbia
  2. 2.Faculty of Science and EngineeringAbo Akademi UniversityTurkuFinland
  3. 3.Faculty of Sciences, Department of Biology and EcologyUniversity of Novi SadNovi SadSerbia

Personalised recommendations