Advertisement

Wounding and medium formulation affect de novo shoot organogenic responses in hypocotyl-derived explants of annatto (Bixa orellana L.)

  • Daniele Vidal Faria
  • Ludmila Nayara de Freitas Correia
  • Elyabe Monteiro de Matos
  • Maria Victoria Costa de Souza
  • Diego Silva Batista
  • Marcio Gilberto Cardoso Costa
  • Vespasiano Borges de Paiva Neto
  • Aloisio Xavier
  • Marcelo Rogalski
  • Wagner Campos OtoniEmail author
Micropropagation
  • 19 Downloads

Abstract

Bixa orellana L. (annatto) is the unique exploited source for the production of bixin and norbixin natural dyes, which are widely used in the food, pharmaceutical, cosmetic, and textile industries. In tissue culture, adequate culture conditions are essential for the development of the plant. Among them, the saline composition of the culture medium and the type of explants are limiting factors. In this study, the effect of MS (Murashige and Skoog), Correia and colleagues (JADS) medium, Woody Plant Medium (WPM), and Driver Kuniyuki Walnut (DKW) culture media and wounding of hypocotyl explants on de novo shoot organogenesis (DNSO) of annatto were evaluated. It was demonstrated that JADS medium improved the nutritional status of shoots, which promoted the best development and quality of the plants generated after acclimatization, when compared to MS medium. The use of JADS medium for annatto DNSO during 45 d of culture was sufficient to regenerate and stimulate the growth of shoots, which had adequate elongation and rhizogenic responses. In addition, enlargement of the wound surface, using longitudinal sections of the hypocotyl explant cut surface down on JADS medium, significantly improved the frequency and number of newly formed shoots. This protocol enabled production of an average of 17 30-mm-long shoots per explant after 90 d of culture. These results will be useful for future studies related to annatto biotechnology.

Keywords

Nutritional status Media formulation Hypocotyl explants Regeneration wounding response 

Notes

Acknowledgements

Chr. Hansen Ind. Com. Ltda. (Valinhos, SP, Brazil) for kindly donating the seeds of Bixa orellana ‘Piave Vermelha’, and the Laboratory of Plant Anatomy-Plant Biology Department/UFV for the facilities and support of the anatomical analyses.

Author’s contributions

DFV, EMM, LNFC, and MVCS raised the in vitro plants for the experiments and performed the experiments; DSB, EMM, and DFV performed statistical analysis; and DFV, EMM, WCO, MGCC, LNFC, VBPN, MR, and AX contributed to the design and interpretation of the research and to the writing of the paper.

Funding information

Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Grant number APQ-02372-17, Belo Horizonte, MG, Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)–Finance Code 001 (Brasília, DF, Brazil) and CNPq (Brasília, DF, Brazil) provided financial support.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11627_2019_9978_MOESM1_ESM.docx (31 kb)
Table S1 Analysis of variance (ANOVA) of the frequency of organogenesis (%), number of shoots per explant, and length of shoots (mm) in explant types of Bixa orellana L. and culture media analysis, after 30 and 60 days. (DOCX 30 kb)

References

  1. Ajitkumar D, Seeni S (1998) Rapid clonal multiplication through in vitro axillary shoot proliferation of Aegle marmelos (L.) Corr., a medicinal tree. Plant Cell Rep 17:422–426CrossRefGoogle Scholar
  2. Araujo MDCDR, Chagas EA, Garcia MIR, Pinto STS, Chagas PC, Vendrame W, Filho ABM, Souza OM (2016) Micropropagation of caçari under different nutritive culture media, antioxidants, and levels of agar and pH. Afr J Biotechnol 15:1771–1780CrossRefGoogle Scholar
  3. Bashir H, Ahmad J, Bagheri R, Nauman M, Irfan Quereshi M (2013) Limited Sulphur resource forces Arabidopsis thaliana to shift towards non-sulfur tolerance under cadmium stress. Environ Exp Bot 94:19–32CrossRefGoogle Scholar
  4. Borah KD, Bhuyan J (2017) Magnesium porphyrins with relevance to chlorophylls. Dalton Trans 46:6497–6509CrossRefGoogle Scholar
  5. Brondani GE, de Wit Ondas HW, Baccarin FJB, Gonçalves AN, Almeida M (2012) Micropropagation of Eucalyptus benthamii to form a clonal micro-garden. In Vitro Cell Dev Biol-Plant 48:478–487CrossRefGoogle Scholar
  6. Cakmak I, Hengeler C, Marschner H (1994) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250CrossRefGoogle Scholar
  7. Cárdenas-Conejo Y, Carballo-Uicab V, Lieberman M, Aguilar-Espinosa M, Comai L, Rivera-Madrid R (2015) De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis. BMC Genomics 16:877CrossRefGoogle Scholar
  8. Carvalho JFRP, Carvalho CR, Otoni WC (2005) In vitro regeneration of annatto (Bixa orellana L.) from various explants. Rev Árvore 29:887–895CrossRefGoogle Scholar
  9. Correia D, Gonçalves AN, Couto HYZ, Ribeiro MC (1995) Efeito do meio de cultura líquido e sólido no crescimento e desenvolvimento de gemas de Eucalyptus grandis x Eucalyptus urophylla na multiplicação in vitro. IPEF 48/49:107–116Google Scholar
  10. Cruz ACF, Rocha DI, Iarema L, Ventrella MC, Costa MGC, Paiva Neto VB, Otoni WC (2014) In vitro organogenesis from root culture segments of Bixa orellana L. (Bixaceae). In Vitro Cell Dev Biol-Plant 50:76–83CrossRefGoogle Scholar
  11. Cruz ACF, Pinheiro MVM, Xavier A, Otoni WC, Costa MGC, Paiva Neto VB, Rêgo MM (2015) In vitro regeneration of annatto (Bixa orellana L.) plantlets from nodal and internodal adult stem segments. Acta Hortic 1083:335–346CrossRefGoogle Scholar
  12. De Block M (1990) Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones. Plant Physiol 93:1110–1116CrossRefGoogle Scholar
  13. Dias VM, Pilla V, Alves LP, Oliveira HPM, Munin E (2011) Optical characterization in annatto and commercial colorific. J Fluoresc 21:415–421CrossRefGoogle Scholar
  14. Driver JA, Kuniyuki AH (1984) In vitro propagation of paradox walnut root stock. HortiScience 19:507–509Google Scholar
  15. Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA (2009) Manual de análises químicas de solos,plantas e fertilizantes. In: Silva FC (ed) 2nd ed. Embrapa Informação Tecnológica, Brasília, p 627Google Scholar
  16. Fischer ES, Bremer E (1993) Influence of magnesium deficiency on rates of leaf expansion, starch and sucrose accumulation, and net assimilation in Phaseolus vulgaris. Physiol Plant 89:271–276CrossRefGoogle Scholar
  17. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158CrossRefGoogle Scholar
  18. George EF, de Klerk G-J (2008) The components of plant tissue culture media I: macro- and micro-nutrients. In: George EF, Hall MA, de Klerk G-J (eds) Plant propagation by tissue culture, 3rd ed, v. 1. The background. Springer-Verlag, DordrechtGoogle Scholar
  19. Giuliano G, Rosati C, Bramley PM (2003) To dye or not to dye: biochemistry of annatto unveiled. Trends Biotechnol 21:513–516CrossRefGoogle Scholar
  20. Hermans C, Verbruggen N (2005) Physiological characterization of mg deficiency in Arabidopsis thaliana. J Exp Bot 56:2153–2161CrossRefGoogle Scholar
  21. Husain MK, Anis M, Shahzad A (2010) Somatic embryogenesis and plant regeneration in Pterocarpus marsupium Roxb. Trees 24:781–787CrossRefGoogle Scholar
  22. Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K (2016) Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442–1451CrossRefGoogle Scholar
  23. Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, Komaki S, Morohashi K, Kurata T, Nakata M, Ohme-Takagi M, Grotewold E, Grotewold E, Sugimoto K (2017) WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. Plant Cell 29:54–69CrossRefGoogle Scholar
  24. Joseph N, Siril EA (2013) Multiplication of annatto (Bixa orellana L.) using cotyledons and leaf explants. Res Plant Biol 3:24–32Google Scholar
  25. Joseph N, Siril EA, Nair GM (2011) An efficient in vitro propagation methodology for annatto (Bixa orellana L.). Physiol Mol Biol Plants 17:263–270CrossRefGoogle Scholar
  26. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138Google Scholar
  27. Landrein B, Formosa-Jordan P, Malivert A, Schuster C, Melnyk CW, Yang W, Turnbulld C, Meyerowitza EM, Lockea JCW, Jönsson H (2018) Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins. Proc Natl Acad Sci U S A 115:1382–1387CrossRefGoogle Scholar
  28. Lewandowska M, Sirko A (2008) Recent advances in understanding plant response to sulfur-deficiency stress. Acta Biochimic Polonica 55:457–471Google Scholar
  29. Lipetz J (1962) Calcium and the control of lignification in tissue cultures. Am J Bot 49:460–464CrossRefGoogle Scholar
  30. Lloyd G, McCown BH (1980) Commercially-feasible micropropagation of mountain Laurel, Kalmia latifolia, by shoot tip culture. Int Plant Prop Soc Proc 30:421–427Google Scholar
  31. Lorenzi H, Matos FJA (2002) Plantas medicinais no Brasil: nativas e exóticas. Jardim Botânico Plantarum, Instituto Plantarum, Nova OdessaGoogle Scholar
  32. Lup SD, Tian X, Xu J, Pérez-Pérez JM (2016) Wound signalling of regenerative cell reprogramming. Plant Sci 250:178–187CrossRefGoogle Scholar
  33. Mala KS, Rao PP, Prabhavathy MB, Satyanarayana A (2015) Studies on application of annatto (Bixa orellana L.) dye formulations in dairy products. J Food Sci Technol 52:912–919CrossRefGoogle Scholar
  34. Marcolino VA, Zanin GM, Durrant LR, Benassi MT, Matioli G (2011) Interaction of curcumin and bixin with β-cyclodextrin: complexation methods, stability, and applications in food. J Agric Food Chem 59:3348–3357CrossRefGoogle Scholar
  35. Mohammed A, Chiruvella KK, Namsa ND, Ghanta RG (2015) An efficient in vitro shoot regeneration from leaf petiolar explants and ex vitro rooting of Bixa orellana L.- a dye yielding plant. Physiol Mol Biol Plant 21:417–424CrossRefGoogle Scholar
  36. Motoike SY, Saraiva ES, Ventrella MC, Silva CV, Salomão LCC (2007) Somatic embryogenesis of Myrciaria aureana (Brazilian grape tree). Plant Cell Tissue Organ Cult 89:75–81CrossRefGoogle Scholar
  37. Murashige T, Skoog F (1962) A revised medium for a rapid growth and bioassays with tobacco tissues cultures. Physiol Plant 15:473–479CrossRefGoogle Scholar
  38. Nas MN, Read PE (2004) A hypothesis for the development of a defined tissue culture medium of higher plants and micropropagation of hazelnuts. Sci Hortic 101:189–200CrossRefGoogle Scholar
  39. O’Brien TP, McCully ME (1981) The study of plant structure principles and selected methods. Termarcarphi Pty Ltd., MelbourneGoogle Scholar
  40. Paiva Neto VBP, Botelho MN, Aguiar R, Silva EAM, Otoni WC (2003a) Somatic embryogenesis from immature zygotic embryos of annatto (Bixa orellana L.). In Vitro Cell Dev Biol-Plant 39:629–634CrossRefGoogle Scholar
  41. Paiva Neto VBP, Mota TR, Otoni WC (2003b) Direct organogenesis from hypocotyl-derived explants of annatto (Bixa orellana L.). Plant Cell Tissue Organ Cult 75:159–167CrossRefGoogle Scholar
  42. Parimalan R, Giridhar P, Gururaj HB, Ravishankar GA (2007) Organogenesis from cotyledon and hypocotyl-derived explants of japhara (Bixa orellana L.). Acta Bot Croatica 66:153–160Google Scholar
  43. Parimalan R, Giridhar P, Ravishankar GA (2008) Mass multiplication of Bixa orellana L. through tissue culture for commercial propagation. Ind Crop Prod 28:122–127CrossRefGoogle Scholar
  44. Parimalan R, Giridhar P, Gururaj HB, Ravishankar GA (2009) Micropropagation of Bixa orellana using phytohormones and triacontanol. Biol Plant 53:347–350CrossRefGoogle Scholar
  45. Parimalan R, Venugopalan A, Giridhar P, Ravishankar GA (2011) Somatic embryogenesis and Agrobacterium-mediated transformation in Bixa orellana L. Plant Cell Tissue Organ Cult 105:317–328CrossRefGoogle Scholar
  46. Pinto G, Silva S, Park YS, Neves L, Araújo C, Santos C (2008) Factors influencing somatic embryogenesis induction in Eucalyptus globulus Labill.: basal medium and anti-browning agents. Plant Cell Tissue Organ Cult 95:79–88CrossRefGoogle Scholar
  47. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. BBA-Bioenergetics 975:384–394Google Scholar
  48. Ramage CM, Williams RR (2002) Mineral nutrition and plant morphogenesis. In Vitro Cell Dev Biol-Plant 38:116–124CrossRefGoogle Scholar
  49. Reed BM, Wada S, DeNoma J, Niedz RP (2013) Improving in vitro mineral nutrition for diverse pear germplasm. In Vitro Cell Dev Biol-Plant 49:343–355CrossRefGoogle Scholar
  50. Rivera-Madrid R, Escobedo GMRM, Balam-Galera E, Vera-Ku M, Harries H (2006) Preliminary studies toward genetic improvement of annatto (Bixa orellana L.). Sci Hortic 109:165–172CrossRefGoogle Scholar
  51. Sigurdson GT, Tang P, Giusti MM (2017) Natural colorants: food colorants from natural sources. Ann Rev Food Sci Technol 8:261–280CrossRefGoogle Scholar
  52. Silja P, Gisha G, Satheeshkumar K (2014) Enhanced plumbagin accumulation in embryogenic cell suspension cultures of Plumbago rosea L. following elicitation. Plant Cell Tissue Organ Cult 119:469–477CrossRefGoogle Scholar
  53. Teixeira da Silva JA, Dobránski J, Rivera-Madrid R (2018) The biotechnology (genetic transformation and molecular biology) of Bixa orellana L. (achiote). Planta 248:267–277CrossRefGoogle Scholar
  54. Venugopalan A, Giridhar P, Ravishankar GA (2011) Food, ethanobotanical and diversified applications of Bixa orellana L.: a scope for its improvement through biotechnological mediation. Indian J fund Appl. Life Sci 1:9–31Google Scholar
  55. Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252CrossRefGoogle Scholar
  56. Yang GH, Yang LT, Jiang HX, Li Y, Wang P, Chen LS (2012) Physiological impacts of magnesium-deficiency in Citrus seedlings: photosynthesis, antioxidant system and carbohydrates. Trees 26:1237–1250CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2019

Authors and Affiliations

  • Daniele Vidal Faria
    • 1
  • Ludmila Nayara de Freitas Correia
    • 1
  • Elyabe Monteiro de Matos
    • 1
  • Maria Victoria Costa de Souza
    • 1
  • Diego Silva Batista
    • 2
  • Marcio Gilberto Cardoso Costa
    • 3
  • Vespasiano Borges de Paiva Neto
    • 4
  • Aloisio Xavier
    • 5
  • Marcelo Rogalski
    • 6
  • Wagner Campos Otoni
    • 1
    Email author
  1. 1.Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos/BIOAGROUniversidade Federal de ViçosaViçosaBrazil
  2. 2.PPG em Agricultura e Ambiente. Universidade Estadual do MaranhãoSão LuísBrazil
  3. 3.Departmento de Ciências BiológicasUniversidade Estadual de Santa CruzIlhéusBrazil
  4. 4.Campus de Ciências AgráriasUniversidade Federal do Vale do São FranciscoPetrolinaBrazil
  5. 5.Laboratório de Cultura de Tecidos/BIOAGRO, Departmento de Engenharia FlorestalUniversidade Federal de ViçosaViçosaBrazil
  6. 6.Departamento de Biologia Vegetal, Laboratório de Fisiologia Molecular/CCBIIUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations