Advertisement

Morphogenesis and in vitro production of caffeoylquinic and caffeic acids in Baccharis conferta Kunth

  • Annel Lizeth Leyva-Peralta
  • Guadalupe Salcedo-Morales
  • Virginia Medina-Pérez
  • Alma Rosa López-Laredo
  • José Luis Trejo-Espino
  • Gabriela Trejo-TapiaEmail author
Plant Tissue Culture
  • 62 Downloads

Abstract

We established a protocol for the in vitro propagation of Baccharis conferta Kunth. This plant is used to treat gastrointestinal problems, cramps, pain, respiratory problems, and insect bites. A high rate of shoot multiplication was obtained from nodal segments on Murashige and Skoog (MS) culture medium. The shoots regenerated roots without exogenous plant growth regulators (PGRs). All explants of wild leaves on MS medium containing 5 μM of thidiazuron (TDZ) produced friable callus. An organogenic response was achieved after 3 wk of culture when callus segments were transferred to MS medium containing a combination of plant growth regulators (PGRs): either (i) 5 μM indole butyric acid (IBA) + 5 μM kinetin (KIN) or (ii) 0.5 μM IBA + 1.10 μM benzylaminopurine (BAP). The morphogenetic responses of callus were characterized by scanning electron microscopy. Shoots regenerated from callus and formed roots on MS medium without PGRs. The micropropagated plantlets and the organogenic callus showed similar chemical profiles in HPLC-mass spectrometry analyses. The main compounds present in the cultures were caffeoylquinic acids. Only plantlets contained small amounts of triterpenes (erythrodiol and ursolic acid). These findings will be useful for the micropropagation of this important native resource, and for further studies on its biology.

Keywords

Baccharis conferta Callus culture Caffeoylquinic acids Caffeic acid Plantlets regeneration Shoot multiplication 

Notes

Acknowledgments

We thank Jennifer Smith, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Authors’ contribution

This work is based on the MSc thesis of ALLP under the supervision of GTT and JLTE. Experiments were performed by ALLP. GSM advised on in vitro culture. VMP and ARLL performed phytochemical analysis. GTT and JLTE designed the study and wrote the manuscript. All authors read and approved the final version of this paper.

Funding information

This research was financed by the Secretaría de Investigación y Posgrado of Instituto Politécnico Nacional (grant 20180034) and by the Consejo Nacional de Ciencia y Tecnología (CONACyT-México) (Grant CB-2013-01-220007). ALLP is indebted to CONACyT for an awarded fellowship and to the Programa Institucional de Formación de Investigadores (BEIFI-IPN).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abad MJ, Bessa AL, Ballarin B, Aragon O, Gonzales E, Bermejo P (2006) Anti-inflammatory activity of four Bolivian Baccharis species (Compositae). J Ethnopharmacol 103:338–344.  https://doi.org/10.1016/j.jep.2005.08.024 CrossRefGoogle Scholar
  2. Aboy AL, Apel MA, Debenedetti S, Francescato L, Rosella MA, Henriques AT (2012) Assay of caffeoylquinic acids in Baccharis trimera by reversed-phase liquid chromatography. J Chromatogr A 1219:147–153.  https://doi.org/10.1016/j.chroma.2011.11.042 CrossRefGoogle Scholar
  3. Aráoz S, Joseau M, Meehan A, Hernández R (2016) Calidad física y fisiológica de semillas de Baccharis crispa Sprengel y Baccharis salicifolia Ruiz & Pav. para su domesticación. Quebracho 24:59–69Google Scholar
  4. Baque M, Hahn E-J, Paek K-Y (2010) Induction mechanism of adventitious root from leaf explants of Morinda citrifolia as affected by auxin and light quality. In Vitro Cell Dev Biol-Plant 46:71–80.  https://doi.org/10.1007/s11627-009-9261-3 CrossRefGoogle Scholar
  5. Benson EE (2000) In vitro plant recalcitrance: an introduction. In Vitro Cell Dev Biol-Plant 36:141–148.  https://doi.org/10.1007/s11627-000-0029-z CrossRefGoogle Scholar
  6. Clifford MN, Wu W, Kirkpatrick J, Kuhnert N (2007) Profiling the chlorogenic acids and other caffeic acid derivatives of herbal Chrysanthemum by LC−MSn. J Agric Food Chem 55:929–936.  https://doi.org/10.1021/jf062314x CrossRefGoogle Scholar
  7. Cortes-Morales JA, Olmedo-Juarez A, Trejo-Tapia G, Gonzalez-Cortazar M, Dominguez-Mendoza BE, Mendoza-de Gives P, Zamilpa A (2019) In vitro ovicidal activity of Baccharis conferta Kunth against Haemonchus contortus. Exp Parasitol 20:20–28.  https://doi.org/10.1016/j.exppara.2019.01.003 CrossRefGoogle Scholar
  8. de Lazzari Almeida C, Xavier RM, Borghi AA, dos Santos VF, Sawaya ACHF (2017) Effect of seasonality and growth conditions on the content of coumarin, chlorogenic acid and dicaffeoylquinic acids in Mikania laevigata Schultz and Mikania glomerata Sprengel (Asteraceae) by UHPLC–MS/MS. Int J Mass Spectrom 418:162–172.  https://doi.org/10.1016/j.ijms.2016.09.016 CrossRefGoogle Scholar
  9. de Oliveira RN, Rehder VL, Oliveira AS, Jeraldo Vde L, Linhares AX, Allegretti SM (2014) Anthelmintic activity in vitro and in vivo of Baccharis trimera (less) DC against immature and adult worms of Schistosoma mansoni. Exp Parasitol 139:63–72.  https://doi.org/10.1016/j.exppara.2014.02.010 CrossRefGoogle Scholar
  10. Figueiredo-Rinhel AS, Kabeya LM, Bueno PC, Jorge-Tiossi RF, Azzolini AE, Bastos JK, Lucisano-Valim YM (2013) Inhibition of the human neutrophil oxidative metabolism by Baccharis dracunculifolia DC (Asteraceae) is influenced by seasonality and the ratio of caffeic acid to other phenolic compounds. J Ethnopharmacol 150:655–664.  https://doi.org/10.1016/j.jep.2013.09.019 CrossRefGoogle Scholar
  11. Heinrich M, Ankli A, Frei B, Weimann C, Sticher O (1998) Medicinal plants in Mexico: healers' consensus and cultural importance. Soc Sci Med 47:1859–1871.  https://doi.org/10.1016/s0277-9536(98)00181-6 CrossRefGoogle Scholar
  12. Hocayen P, Grassiolli S, Leite NC, Pochapski MT, Pereira RA, da Silva LA, Snack AL, Michel RG, Kagimura FY, da Cunha MA, Malfatti CR (2016) Baccharis dracunculifolia methanol extract enhances glucose-stimulated insulin secretion in pancreatic islets of monosodium glutamate induced-obesity model rats. Pharm Biol 54:1263–1271.  https://doi.org/10.3109/13880209.2015.1067232 CrossRefGoogle Scholar
  13. Huang M, Ma X, Zhong Y, Hu Q, Fu M, Han Y (2018) Callus induction and plant regeneration of Spirodela polyrhiza. Plant Cell Tissue Organ Cult 135:445–453.  https://doi.org/10.1007/s11240-018-1477-7 CrossRefGoogle Scholar
  14. Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119.  https://doi.org/10.1007/BF01983223 CrossRefGoogle Scholar
  15. Kim Y, Kim JT, Park J, Son HJ, Kim EY, Lee YJ, Rhyu MR (2017) 4,5-di-O-caffeoylquinic acid from Ligularia fischeri suppresses inflammatory responses through TRPV1 activation. Phytother Res 31:1564–1570.  https://doi.org/10.1002/ptr.5885 CrossRefGoogle Scholar
  16. Mata S (2009) Atlas de las plantas de la medicina tradicional mexicana. In: Universidad Nacional Autónoma de México. http://www.medicinatradicionalmexicana.unam.mx/atlas.php. Accessed 18 March 2019
  17. Modarres M, Esmaeilzadeh Bahabadi S, Taghavizadeh Yazdi ME (2018) Enhanced production of phenolic acids in cell suspension culture of Salvia leriifolia Benth. Using growth regulators and sucrose. Cytotechnol 70:741–750.  https://doi.org/10.1007/s10616-017-0178-0 CrossRefGoogle Scholar
  18. Montes-Hernández E (2016) Interacción entre Castilleja tenuiflora Benth. y Baccharis conferta Kunth. Departamento de Biotecnología. vol Doctor in Sciences. Instituto Politécnico Nacional, Yautepec, Morelos, México, p 137Google Scholar
  19. Montes-Hernández E, Sandoval-Zapotitla E, Bermúdez-Torres K, Trejo-Tapia G (2015) Potential hosts of Castilleja tenuiflora (Orobanchaceae) and characterization of its haustoria. Flora 214:11–16.  https://doi.org/10.1016/j.flora.2015.05.003 CrossRefGoogle Scholar
  20. Moreno-Pizani MA, Farias-Ramirez AJ, HTd S, Novembre ADLC, Guevara-Orozco LI, Paredes-Trejo F, Marin FR, Dias NS, Marques PAA (2019) Qualitative and quantitative evaluation protocol of Baccharis seed germination. J Agric Sci 11:421.  https://doi.org/10.5539/jas.v11n3p421 Google Scholar
  21. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  22. Naranjo-Gómez EJ, Puertas-Mejía MA, Mejía-Giraldo JC, Amaya-Nieto AZ, Atehortúa L (2018) Micropropagation of Baccharis antioquensis (Asteraceae) and photoinduction of polyphenols by UV radiation. Rev Biol Trop 66:754.  https://doi.org/10.15517/rbt.v66i2.33406 CrossRefGoogle Scholar
  23. Popielarska M, Slesak H, Goralski G (2006) Histological and SEM studies on organogenesis in endosperm-derived callus of kiwifruit (Actinidia deliciosa cv. Hayward). Acta Biol Crac Ser Bot 48:97–104Google Scholar
  24. Ramos-Campos F, Bressan J, Godoy V, Zuccolotto T, da Silva LE, Bonancio L (2016) Baccharis (Asteraceae): chemical constituents and biological activities. Chem Biodivers 13:1–17.  https://doi.org/10.1002/cbdv.201500363 CrossRefGoogle Scholar
  25. Rawat JM, Rawat B, Agnihotri RK, Chandra A, Nautiyal S (2013) In vitro propagation, genetic and secondary metabolite analysis of Aconitum violaceum Jacq.: a threatened medicinal herb. Acta Physiol Plant 35:2589–2599.  https://doi.org/10.1007/s11738-013-1294-x CrossRefGoogle Scholar
  26. Sabir SM, Athayde ML, Boligon AA, Rocha JBT (2017) Antioxidant activities and phenolic profile of Baccharis trimera, a commonly used medicinal plant from Brazil. S Afr J Bot 113:318–323.  https://doi.org/10.1016/j.sajb.2017.09.010 CrossRefGoogle Scholar
  27. Saini S, Sharma I, Kaur N, Pati PK (2013) Auxin: a master regulator in plant root development. Plant Cell Rep 32:741–757.  https://doi.org/10.1007/s00299-013-1430-5 CrossRefGoogle Scholar
  28. Sartor T, Xavier VB, Falcão MA, Mondin CA, dos Santos MA, Cassel E, Astarita LV, Santarém ER (2013) Seasonal changes in phenolic compounds and in the biological activities of Baccharis dentata (Vell.) G.M. Barroso. Ind Crop Prod 51:355–359.  https://doi.org/10.1016/j.indcrop.2013.09.018 CrossRefGoogle Scholar
  29. Sharon SL, Simone dS, Claudio BM, Celso LSL, Alice S (2017) Effect of auxin and cytokinin on phenolic content of Baccharis myriocephala DC. (Asteraceae) produced in vitro. J Med Plant Res 11:642–647.  https://doi.org/10.5897/jmpr2017.6465 CrossRefGoogle Scholar
  30. Silva FG, Brasil Pereira Pinto JE, Sales JF, Divino SP, Vilela B, Kely S (2003) Efeito da concentração de sais e fitorreguladores na indução de calos em carqueja. Ciênc Agrotec 27:541–547.  https://doi.org/10.1590/S1413-70542003000300007 CrossRefGoogle Scholar
  31. Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228Google Scholar
  32. Weimann C, Göransson U, Pongprayooon-Claeson U, Claeson P, Bohlin L, Rimpler H, Heinrich M (2002) Spasmolytic effects of Baccharis conferta and some of its constituent. J Pharm Pharmacol 54:99–104CrossRefGoogle Scholar
  33. Yang PF, Feng ZM, Yang YN, Jiang JS, Zhang PC (2017) Neuroprotective caffeoylquinic acid derivatives from the flowers of Chrysanthemum morifolium. J Nat Prod 80:1028–1033.  https://doi.org/10.1021/acs.jnatprod.6b01026 CrossRefGoogle Scholar
  34. Yücesan B (2018) Thidiazuron (TDZ): a callus minimizer for in vitro plant production. In Ahmad N and Faisal M (eds) Thidiazuron: from urea derivative to plant growth regulator, book, Springer Nature Singapore, pp. 289–294  https://doi.org/10.1007/978-981-10-8004-3_14
  35. Yücesan B, Mohammed A, Büyükgöçmen R, Cevhef A, Kavas Ö, Gürel S, Gürel E (2016) In vitro and ex vitro propagation of Stevia Rebaudiana Bertoni with high Rebaudioside-a content-a commercial scale application. Sci Hortic 203:20–28.  https://doi.org/10.1016/j.scienta.2016.03.008 CrossRefGoogle Scholar
  36. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333.  https://doi.org/10.1016/j.biotechadv.2005.01.003 CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2019

Authors and Affiliations

  1. 1.Departamento de Biotecnología, Centro de Desarrollo de Productos BióticosInstituto Politécnico NacionalYautepecMexico

Personalised recommendations