The in vitro propagation system of Citrus × latifolia (Yu. Tanaka) Yu. Tanaka (Rutaceae) affects the growth and depletion of nutriments

  • Javier Emanuel Bulbarela-Marini
  • Fernando Carlos Gómez-Merino
  • María Elena Galindo-Tovar
  • Luis Alberto Solano-Rodríguez
  • Joaquín Murguía-González
  • Miriam Cristina Pastelín-Solano
  • Rosalía Núñez-Pastrana
  • Odón Castañeda-CastroEmail author


Among citrus fruits, Citrus × latifolia (Yu. Tanaka) Yu. Tanaka stands out given its diverse uses, and there is a great demand for plants of high phytosanitary and genetic quality. In the present study, the in vitro micropropagation process of C. latifolia was studied in RITA®-type bioreactor, semisolid medium, and partial immersion with liquid culture medium. Explants that were 2 mo of age were used and apices of 0.5 cm were extracted and placed in each culture system. In all the systems, MS (Murashige and Skoog) culture medium was used, supplemented with 6-benzylaminopurine (BAP) and kinetin (KIN). After 30 d, the number of shoots, the size of the shoots, the number of leaves, and the depletion of nutrients from the culture medium were analyzed. With the data obtained, ANOVA and Tukey’s mean comparison tests were performed. The RITA® bioreactors, with the addition of 40 mL of medium per explant in a 4-h-interval immersion, facilitated the production of the greatest number of shoots compared to the other culture systems, and also resulted in the highest levels in medium nutrient depletion.


Persian lemon Bioreactors RITA® Nutrients Shoots 



The authors wish to thank the Comité Ejecutivo Nacional Sistema Producto Limón Persa A. C. Cuitláhuac, Veracruz, México, for their support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ahmadian M, Babaei A, Shokri S, Hessami S (2017) Micropropagation of carnation (Dianthus caryophyllus L.) in liquid medium by temporary immersion bioreactor in comparison with solid culture. J Genet Eng Biotechnol 15:309–315CrossRefGoogle Scholar
  2. Akdemir H, Süzerer V, Onay A, Tilkat E, Ersali Y, Çiftçi YO (2014) Micropropagation of the pistachio and its rootstocks by temporary immersion system. Plant Cell Tissue Organ Cult 117:65–76CrossRefGoogle Scholar
  3. Alcántar GG, Sandoval MV (1999) Manual de análisis químico de tejido vegetal. Publicación especial. Núm. 10. SMCS. Chapingo, Texcoco, Estado de México. 150 pGoogle Scholar
  4. Bassan MM, Alves Mourao FA, Miyata LY, Januzzi-Mendes BM (2011) In vitro organogenesis from internodal segments of adult sweet orange plants. Pesq Agropec Bras 46:672–674CrossRefGoogle Scholar
  5. Bordas M, Torrents J, Navarro L (2015) Micropropagation for evaluation of new Citrus somatic hybrid rootstocks. Acta Hortic 1065:329–334. CrossRefGoogle Scholar
  6. Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012) In: Marschner P (ed) Function of nutrients: micronutrients, Marschner’s mineral nutrition of higher plants. Academic Press, Burlington, pp 191–248CrossRefGoogle Scholar
  7. Cardoso JC, Abdelgalel AM, Chiancone B, Latado RR, Lain O, Testolin R, Germanà MA (2016) Gametic and somatic embryogenesis through in vitro anther culture of different Citrus genotypes. Plant Biosyst 150:304–312. CrossRefGoogle Scholar
  8. Cervera M, Navarro A, Navarro L, Peña L (2008) Production of transgenic adult plants from clementine mandarin by enhancing cell competence for transformation and regeneration. Tree Physiol 28:55–66CrossRefGoogle Scholar
  9. Clostre G, Suni M (2007) Efecto del nitrógeno, fósforo y potasio del medio de cultivo en el rendimiento y valor nutritivo de Lemna gibba L. (Lemnaceae). Rev Peru Biol 13:231–235Google Scholar
  10. Curtis IS, Mirkov TE (2012) Influence of surfactants on growth and regeneration from mature internodal stem segments of sweet orange (Citrus sinensis) cv. Hamlin. Plant Cell Tissue Organ Cult 108:345–352CrossRefGoogle Scholar
  11. El-Hawaz R, Park D, Bridges WC, Adelberg J (2016) Optimizing in vitro mineral nutrition and plant density increases greenhouse growth of Curcuma longa L. during acclimatization. Plant Cell Tissue Organ Cult 126:33–42CrossRefGoogle Scholar
  12. El-Sherif NA (2017) Impact of plant tissue culture on agricultural sustainability. In: Barceló D, Kostianoy AG (eds) The handbook of environmental chemistry. Springer, BerlinGoogle Scholar
  13. Food and Agricultural Organization (2017) Citrus fruit - fresh and processed statistical bulletin 2016. Food and agriculture organization of the united nations, RomeGoogle Scholar
  14. Gao M, Jiang W, Wei S, Lin Z, Cai B, Yang L, Luo C, He X, Tan J, Chen L (2015) High-efficiency propagation of Chinese water chestnut [Eleocharis dulcis (Burm.f.) Trin. ex Hensch] using a temporary immersion bioreactor system. Plant Cell Tissue Organ Cult 121:761–772CrossRefGoogle Scholar
  15. Gentile A, Deng Z, LaMalfa S, Distefano G, Domina F, Vitale A, Polizzi G, Lorito M, Tribulato E (2007) Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene. Plant Breed 126:146–151CrossRefGoogle Scholar
  16. Georgiev V, Schumann A, Pavlov A, Bley T (2014) Temporary immersion systems in plant biotechnology. Eng Life Sci 14:607–621. CrossRefGoogle Scholar
  17. Jaiswal DK, Prakash Verma J, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29CrossRefGoogle Scholar
  18. Jin S, Park J, Park S, Lee D, Yun S (2017) Production of citrus plants from ovule cell culture and verification of CTV-free plants. Hortic Sci Technol 35:121–130Google Scholar
  19. Kintzios S, Stavropoulou E, Skamneli S (2004) Accumulation of selected macronutrients and carbohydrates in melon tissue cultures: association with pathways of in vitro dedifferentiation and differentiation (organogenesis, somatic embryogenesis). Plant Sci 167:655–664CrossRefGoogle Scholar
  20. Krapp A (2015) Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Plant Biol 25:115–122Google Scholar
  21. Mosqueda-Frometa O, Escalona-Morgado MM, Teixeira da Silva JA, Pina-Morgado DT, Daquinta-Gradaille MA (2017) In vitro propagation of Gerbera jamesonii Bolus ex Hooker f. in a temporary immersion bioreactor. Plant Cell Tissue Organ Cult 129:543–551CrossRefGoogle Scholar
  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  23. Navarro-García N, Morte A, Pérez-Tornero O (2016) In vitro adventitious organogenesis and histological characterization from mature nodal explants of Citrus limon. In Vitro Cell Dev Biol-Plant 52:161–173CrossRefGoogle Scholar
  24. Pérez-Tornero O, Tallón CI, Porras I (2010) An efficient protocol for micropropagation of lemon (Citrus limon) from mature nodal segments. Plant Cell Tissue Organ Cult 100:263–271CrossRefGoogle Scholar
  25. Posada-Pérez L, Montesinos YP, Guerra DG, Daniels D, Gómez-Kosky R (2017) Complete germination of papaya (Carica papaya L. cv. ‘Maradol Roja’) somatic embryos using temporary immersion system type RITA® and phloroglucinol in semisolid culture medium. In Vitro Cell Dev Biol-Plant 53:505–513CrossRefGoogle Scholar
  26. Ptak A, Simlat M, Kwiecień M, Laurain-Mattar D (2013) Leucojum aestivum plants propagated in vitro bioreactor culture and on solid media containing cytokinins. Eng Life Sci 13:261–270CrossRefGoogle Scholar
  27. Ramfula D, Tarnusb E, Aruomac OI, Bourdonb E, Bahorund T (2011) Polyphenol composition, vitamin C content and antioxidant capacity of Mauritian citrus fruit pulps. Food Res Int 44:2088–2099CrossRefGoogle Scholar
  28. Ramírez-Mosqueda MA, Iglesias-Andreu LG (2016) Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia Jacks. In Vitro Cell Dev Biol-Plant 52:154–160CrossRefGoogle Scholar
  29. Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453CrossRefGoogle Scholar
  30. Servicio de Información Agroalimentaria y Pesquera (2016) Accessed 20-03-2018
  31. Tallón CI, Córdoba F, Porras I, Pérez-Tornero O (2015) Efficient in vitro propagation and rooting of adult explants of citrus rootstocks. Acta Hortic 1065:649–656.
  32. Tallón CI, Porras I, Pérez-Tornero O (2013) High efficiency in vitro organogenesis from mature tissue explants of Citrus macrophylla and C. aurantium. In Vitro Cell Dev Biol-Plant 49:145–155Google Scholar
  33. Werner S, Maschke RW, Eibl D, Eibl R (2017) Bioreactor technology for sustainable production of plant cell-derived products. In: Pavlov A, Bley T (eds) Bioprocessing of plant in vitro systems, Reference series in phytochemistry. Springer, Basel, pp 1–20Google Scholar
  34. White PJ (2015) Calcium. In: Barker A, Pilbeam D (ed) Handbook of plant nutrition. CRC Press, Boca Raton, pp 165–189CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2019

Authors and Affiliations

  • Javier Emanuel Bulbarela-Marini
    • 1
  • Fernando Carlos Gómez-Merino
    • 2
  • María Elena Galindo-Tovar
    • 1
  • Luis Alberto Solano-Rodríguez
    • 3
  • Joaquín Murguía-González
    • 1
  • Miriam Cristina Pastelín-Solano
    • 4
  • Rosalía Núñez-Pastrana
    • 1
  • Odón Castañeda-Castro
    • 4
    Email author
  1. 1.Facultad de Ciencias Biológicas y AgropecuariasUniversidad VeracruzanaVeracruz, C.PMexico
  2. 2.Colegio de Postgraduados, Campus CórdobaVeracruz, C.PMexico
  3. 3.Producción Genética Agropecuaria de México S. P. R., de R. L. de C.V. (PROGAMEX)Veracruz, C.PMexico
  4. 4.Facultad de Ciencias QuímicasUniversidad VeracruzanaVeracruz, C. PMexico

Personalised recommendations