Advertisement

In Vitro Cellular & Developmental Biology - Plant

, Volume 54, Issue 6, pp 565–575 | Cite as

Cryopreservation of an endangered Hladnikia pastinacifolia Rchb. by shoot tip encapsulation-dehydration and encapsulation-vitrification

  • Terezija Ciringer
  • Carmen Martín
  • Nina Šajna
  • Mitja Kaligarič
  • Jana Ambrožič-Dolinšek
Biotechnology
  • 84 Downloads

Abstract

The objective of the present study was the cryopreservation of monotypic endemic Hladnikia pastinacifolia Rchb. shoot tips from an in vitro culture, via encapsulation-dehydration (ED) or encapsulation-vitrification (EV). For all tested genotypes, the highest rates of shoot regrowth and multiplication were obtained after overnight preculture in 0.4 M sucrose, encapsulation in Murashige and Skoog (MS) medium with 0.4 M sucrose and 1 M glycerol, followed by polymerization in 3% (w/v) Na-alginate in MS with 0.4 M sucrose. Optimal osmoprotection was achieved for ED with 0.4 M sucrose plus 1 M glycerol and for EV with 0.4 M sucrose plus 2 M glycerol. The best dehydration time for ED was 150 min in a desiccation chamber with silica gel, and the best vitrification time for EV was 85 min in plant vitrification solution 2 (PVS2). For ED, dehydration for 150 min resulted in explant water content of 22%. When the encapsulation method was combined with ED, 53% regrowth was achieved, and when it was combined with EV, 64% regrowth was achieved. Both methods could become applicable for the long-term cryopreservation of H. pastinacifolia germplasm, although EV was faster and resulted in better final regrowth success. Genetic stability analysis of cryopreserved plant samples was carried out for two genotypes, using random amplified polymorphic DNA (RAPD) markers to compare the two different cryopreservation protocols. Significant genetic differences between the genotypes were detected and a low level of genomic variation was observed.

Keywords

Shoot tip cryopreservation Hladnikia pastinacifolia Rchb. Apiaceae Encapsulation-dehydration Encapsulation-vitrification 

Notes

Funding information

The Slovene Ministry of Higher Education, Science, and Technology supported this research within the program “Research to Ensure Food Safety and Health” with the Grant No. P1-0164, led by D. Škorjanc.

Supplementary material

11627_2018_9917_MOESM1_ESM.docx (27 kb)
ESM 1 (DOCX 21 kb)

References

  1. Ambrožič-Dolinšek J, Ciringer T, Kaligarič M (2016) Micropropagation of the narrow endemic Hladnikia pastinacifolia (Apiaceae). Acta Bot Croat 75:244–252CrossRefGoogle Scholar
  2. Benelli C, de Carlo A, Engelmann F (2013) Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotechnol Adv 31:175–185CrossRefGoogle Scholar
  3. Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory & practice. Crit Rev Plant Sci 27:141–219CrossRefGoogle Scholar
  4. Castillo NRF, Bassil NV, Wada S, Reed BM (2010) Genetic stability of cryopreserved shoot tips of Rubus germplasm. In Vitro Cell Dev Biol Plant 46:246–256CrossRefGoogle Scholar
  5. Charoensub R, Hirai D, Sakai A (2004) Cryopreservation of in vitro-grown shoot tips of cassava by encapsulation-vitrification method. CryoLetters 25:51–58PubMedGoogle Scholar
  6. Coelho N, Gonçalves S, González-Benito ME, Romano A (2012) Establishment of an in vitro propagation protocol for Thymus lotocephalus, a rare aromatic species of the Algarve (Portugal). Plant Growth Regul 66:69–74CrossRefGoogle Scholar
  7. Čušin B (2004) Hladnikia pastinacifolia Rchb. – rebrinčevolistna hladnikija, hladnikovka. In: Čušin B, Babij V, Bačič T, Dakskobler I, Frajman B, Jogan N, Kaligarič M, Praprotnik N, Seliškar A, Skoberne P, Surina B, Škornik S, Vreš B. (eds) Natura 2000 v Sloveniji, Rastline. Založba ZRC, ZRC SAZU, Ljubljana (ISBN 961-6500-66-X), pp 107–113 (Slovenian language)Google Scholar
  8. Engelmann F, Gonzalez Arnao MT, Wu Y, Escobar R (2008) Development of encapsulation in dehydration. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 59–75CrossRefGoogle Scholar
  9. Halmagyi A, Deliu C (2007) Cryopreservation of carnation (Dianthus caryophyllus L.) shoot tips by encapsulation-vitrification. Sci Hortic 113:300–306CrossRefGoogle Scholar
  10. Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25:3–22PubMedGoogle Scholar
  11. Hirai D, Sakai A (1999) Cryopreservation of in vitro grown axillary shoot-tip meristems of mint (Mentha spicata) by encapsulation-vitrification. Plant Cell Rep 19:150–155CrossRefGoogle Scholar
  12. Hirai D, Sakai A (2000) Cryopreservation techniques. Cryopreservation of in vitro grown meristems of potato (Solanum tuberosum L.) by encapsulation–vitrification. JIRCAS Int Agric Ser 8:205–211Google Scholar
  13. Jeon SM, Arun M, Lee SY, Kim CK (2015) Application of encapsulation-vitrification in combination with air dehydration enhances cryotolerance of Chrysanthemum morifolium shoots tips. Sci Hortic 194:91–99CrossRefGoogle Scholar
  14. Li BQ, Feng CH, Wang MR, Hu LY, Volk G, Wang QC (2015) Recovery patterns histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet-vitrification and encapsulation-dehydration procedures. J Biotechnol 214:182–191CrossRefGoogle Scholar
  15. Lipavska H, Vreugdenhil D (1996) Uptake of mannitol from the media by in vitro grown plants. Plant Cell Tissue Organ Cult 45:103–107CrossRefGoogle Scholar
  16. Martin C, Gonzalez-Benito ME (2005) Survival and genetic stability of Dendranthema grandiflora Tzvelev shoot apices after cryopreservation by vitrification and encapsulation-dehydration. Cryobiology 51:281–289CrossRefGoogle Scholar
  17. Martin C, Cervera MT, Gonzalez-Benito ME (2011) Genetic stability analysis of chrysanthemum (Chrysanthemum x morifolium Ramat) after different stages of an encapsulation-dehydration cryopreservation protocol. J Plant Physiol 168:158–166CrossRefGoogle Scholar
  18. Martín C, Kremer C, González I, González-Benito ME (2015) Influence of the cryopreservation technique, recovery medium and genotype on genetic stability of mint cryopreserved shoot tips. Plant Cell Tissue Organ Cult 122:185–195CrossRefGoogle Scholar
  19. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  20. Nuc K, Marszałek M, Pukacki PM (2016) Cryopreservation changes the DNA methylation of embryonic axes of Quercus robur and Fagus sylvatica seeds during in vitro culture. Trees 30:1831–1841CrossRefGoogle Scholar
  21. Panis B, Lambardi M (2005) Status of cryopreservation technologies in plants (crops and forest trees). The role of biotechnology, Villa Gualino, Turin, Italy – 5-7 March pp.43–54Google Scholar
  22. Peakall R, Smouse P (2012) GenAlEx 6.501: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefGoogle Scholar
  23. Pence VC (2013) In vitro methods and the challenge of exceptional species for target 8 of the global strategy for plant conservation. Ann Mo Bot Gard 99:214–220CrossRefGoogle Scholar
  24. Pence VC (2014) Tissue cryopreservation for plant conservation: potential and challenges. Int J Plant Sci 175:40–45CrossRefGoogle Scholar
  25. Rohlf FJ (1992) NTSYS-PC: numerical taxonomy and multivariate analysis system. Exeter Software, New YorkGoogle Scholar
  26. Šajna N, Kavar T, Šuštar-Vozlič J, Kaligarič M (2012) Population genetics of the narrow endemic Hladnikia pastinacifolia Rchb. (Apiaceae) indicates survival in situ during the Pleistocene. Acta Biol Cracov Ser Bot 54:1–13Google Scholar
  27. Šajna N, Šuštar-Vozlič J, Kaligarič M (2014) New insights into the anatomy of an endemic Hladnikia pastinacifolia Rchb. Acta Bot Croat 73:375–384CrossRefGoogle Scholar
  28. Sakai A, Engelmann F (2007) Vitrification encapsulation-vitrification and droplet-vitrification: a review. CryoLetters 28:151–172PubMedGoogle Scholar
  29. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33CrossRefGoogle Scholar
  30. Sharma S, Shahzad A, Teixeira da Silva JA (2013) Synseed technology—a complete synthesis. Biotechnol Adv 31:186–207CrossRefGoogle Scholar
  31. Shatnawi M, Engelmann F, Frattarelli A, Damiano C, Withers LA (1999) Cryopreservation of apices from in vitro plantlets of almond (Prunus dulcis). CryoLetters 20:13–20Google Scholar
  32. Šuštar-Vozlič J, Javornik B (1999) Genetic relationships in cultivars of hops, Humulus lupulus L., determined by RAPD analysis. Plant Breed 118:175–181CrossRefGoogle Scholar
  33. Suzuki M, Tandon P, Ishikawa M, Toyomasu T (2008) Development of a new vitrification solution, VSL, and its application to the cryopreservation of gentian axillary buds. Plant Biotech Rep 2:123–131CrossRefGoogle Scholar
  34. Wang B, Zhang Z, Yin Z, Feng C, Wang Q (2012) Novel and potential application of cryopreservation to plant genetic transformation. Biotechnol Adv 30:604–612CrossRefGoogle Scholar
  35. Wang B, Li JW, Zhang ZB, Wang RR, Ma YL, Blystad DR, Keller ERJ, Wang QC (2014) Three vitrification-based cryopreservation procedures cause different cryo-injuries to potato shoot tips while all maintain genetic integrity in regenerants. J Biotechnol 84:47–55CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2018

Authors and Affiliations

  • Terezija Ciringer
    • 1
  • Carmen Martín
    • 2
  • Nina Šajna
    • 1
  • Mitja Kaligarič
    • 1
  • Jana Ambrožič-Dolinšek
    • 1
    • 3
  1. 1.Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
  2. 2.Departemento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
  3. 3.Faculty of EducationUniversity of MariborMariborSlovenia

Personalised recommendations