Genetic engineering of trees: progress and new horizons

  • Shujun Chang
  • Elizabeth L. Mahon
  • Heather A. MacKay
  • William H. Rottmann
  • Steven H. Strauss
  • Paula M. Pijut
  • William A. Powell
  • Vernon Coffey
  • Haiwei Lu
  • Shawn D. Mansfield
  • Todd J. JonesEmail author
Invited Review


Genetic engineering of trees to improve productivity, wood quality, and resistance to biotic and abiotic stresses has been the primary goal of the forest biotechnology community for decades. We review the extensive progress in these areas and their current status with respect to commercial applications. Examples include novel methods for lignin modification, solutions for long-standing problems related to pathogen resistance, modifications to flowering onset and fertility, and drought and freeze tolerance. There have been numerous successful greenhouse and field demonstrations of genetically engineered trees, but commercial application has been severely limited by social and technical considerations. Key social factors are costly and uncertain regulatory hurdles and sweeping market barriers in the form of forest certification systems that disallow genetically modified trees. These factors limit and, in many cases, preclude field research and commercial adoption. Another challenge is the high cost and uncertainty in transformation efficiency that is needed to apply genetic engineering and gene editing methods to most species and genotypes of commercial importance. Recent advances in developmental gene-based transformation systems and gene editing, if combined with regulatory and certification system reform, could provide the foundation for genetic engineering to become a significant tool for coping with the increasing environmental and biological stresses on planted and wild forests.


Trees Forest biotechnology Genome editing 



The authors are grateful for the contributions from Professor Ronald Sederoff and Professor Vincent Chiang of Department of Forestry and Environmental Resources, North Carolina State University.


  1. Ali Z, Abul-faraj A, Li L, Ghosh N, Piatek M, Mahjoub A, Aouida M, Piatek A, Baltes NJ, Voytas DF, Dinesh-Kumar S, Mahfouz MM (2015) Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant 8:1288–1291PubMedCrossRefGoogle Scholar
  2. Álvarez R, Alonso P, Cortizo M, Celestino C, Hernández I, Toribio M, Ordás RJ (2014) Genetic transformation of selected mature cork oak (Quercus suber L.) trees. Plant Cell Rep 23:218–223CrossRefGoogle Scholar
  3. Álvarez R, Álvarez JM, Humara JM, Revilla A, Ordás RJ (2009) Genetic transformation of cork oak (Quercus suber L.) for herbicide resistance. Biotechnol Lett 31:1477–1483PubMedCrossRefGoogle Scholar
  4. Álvarez R, Ordás RJ (2007) Improved genetic transformation protocol for cork oak (Quercus suber L.). Plant Cell Tissue Organ Cult 91:45–52CrossRefGoogle Scholar
  5. Álvarez R, Toribio M, Cortizo M, Fernández R-JO (2006) Cork oak trees (Quercus suber L.). In: Wang K (ed) Methods in molecular biology, vol 344, Agrobacterium protocols, vol 2, 2nd edn. Humana Press Inc., Totowa, pp 113–123CrossRefGoogle Scholar
  6. Amerson HV, Nelson CD, Kubisiak TL, Kuhlman EG, Garcia SA (2015) Identification of nine pathotype-specific genes conferring resistance to fusiform rust in loblolly pine (Pinus taeda L.). Forests 6:2739–2761CrossRefGoogle Scholar
  7. Anacker BL, Rank NE, Hüberli D, Garbelotto M, Gordon S, Harnik T, Whitkus R, Meentemeyer R (2008) Susceptibility to Phytophthora ramorum in a key infectious host: landscape variation in host genotype, host phenotype, and environmental factors. New Phytol 177:756–766PubMedCrossRefGoogle Scholar
  8. Anagnostakis SL (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:23–37CrossRefGoogle Scholar
  9. Anagnostakis SL (2012) Chestnut breeding in the United States for disease and insect resistance. Plant Dis 96:1392–1403CrossRefGoogle Scholar
  10. Andrade GM, Nairn CJ, Le HT, Merkle SA (2009) Sexually mature transgenic American chestnut trees via embryogenic suspension-based transformation. Plant Cell Rep 28:1385–1397PubMedCrossRefGoogle Scholar
  11. Anonymous (2015) Brazil approves transgenic eucalyptus. Nat Biotechnol 33:577Google Scholar
  12. Araji S, Grammer TA, Gertzen R, Anderson SD, Mikulic-Petkovsek M, Veberic R, Phu ML, Solar A, Leslie CA, Dandekar AM, Escobar MA (2014) Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiol 164:1191–1203PubMedPubMedCentralCrossRefGoogle Scholar
  13. Argout X, Salse J, Aury J-M, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M, Murat F, Fouet O, Poulain J, Ruiz M, Roguet Y, Rodier-Goud M, Barbosa-Neto JF, Sabot F, Kudrna D, Ammiraju JSS, Schuster SC, Carlson JE, Sallet E, Schiex T, Dievart A, Kramer M, Gelley L, Shi Z, Bérard A, Viot C, Boccara M, Risterucci AM, Guignon V, Sabau X, Axtell MJ, Ma Z, Zhang Y, Brown S, Bourge M, Golser W, Song X, Clement D, Rivallan R, Tahi M, Akaza JM, Pitollat B, Gramacho K, D'Hont A, Brunel D, Infante D, Kebe I, Costet P, Wing R, McCombie WR, Guiderdoni E, Quetier F, Panaud O, Wincker P, Bocs S, Lanaud C (2011) The genome of Theobroma cacao. Nat Genet 14:101–108CrossRefGoogle Scholar
  14. Ariani A, Francini A, Andreucci A, Sebastiani L (2016) Over-expression of AQUA1 in Populus alba Villafranca clone increases relative growth rate and water use efficiency, under Zn excess condition. Plant Cell Rep 35:289–301PubMedCrossRefGoogle Scholar
  15. Arrillaga I, Segura J, Merkle SA (2008) Black locust. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants, Transgenic forest tree species, vol 9. Wiley-Blackwell, Chichester, pp 293–307CrossRefGoogle Scholar
  16. Attílio LB, Martins PK, Gómez-Krapp LM, Machado MA, Freitas-Astúa J (2014) Genetic transformation of sweet oranges to over-express SABP2 gene. BMC Proc 8:P109PubMedCentralCrossRefGoogle Scholar
  17. Baird RE (1991) Growth and stromata production of hypovirulent and virulent strains of Cryphonectria parasitica on dead Quercus rubra and Acer rubrum. Mycologia 83:158–162CrossRefGoogle Scholar
  18. Baldoni E, Genga A, Cominelli E (2015) Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci 16:15811–15851PubMedPubMedCentralCrossRefGoogle Scholar
  19. Balestrazzi A, Bonadei M, Carbonera D (2007) Nuclease-producing bacteria in soil cultivated with herbicide resistant transgenic white poplars. Ann Microbiol 57:531–536CrossRefGoogle Scholar
  20. Balestrazzi A, Bonadei M, Zelasco S, Giorcelli A, Gennaro M, Calligari P, Mattivi F, Quattrini E, Carbonera D (2011) Seasonal and tissue-specific transgene expression and resveratrol-3-glucoside (piceid) accumulation in genetically modified white poplars carrying the grapevine StSy gene. Plant Cell Tissue Organ Cult 105:1–8CrossRefGoogle Scholar
  21. Balestrazzi A, Botti S, Zelasco S, Biondi S, Franchin C, Calligari P, Racchi M, Turchi A, Lingua G, Berta G, Carbonera D (2009) Expression of the PsMT A1 gene in white poplar engineered with the MAT system is associated with heavy metal tolerance and protection against 8-hydroxy-2′-deoxyguanosine mediated-DNA damage. Plant Cell Rep 28:1179–1192PubMedCrossRefGoogle Scholar
  22. Betti M, Bauwe H, Busch FA, Fernie AR, Keech O, Levey M, Ort DR, Parry MAJ, Sage R, Timm S, Walker B, Webber APM (2016) Manipulation photorespiration to increase plant productivity: recent advances and perspectives for crop improvement. J Exp Bot 67:2977–2988PubMedCrossRefGoogle Scholar
  23. Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Yuen MMS, Keeling CI, Brand D, Vandervalk BP, Kirk H, Pandoh P, Moore RA, Zhao Y, Mungall AJ, Jaquish B, Yanchuk A, Ritland C, Boyle B, Bousquet J, Ritland K, Mackay J, Bohlmann J, Jones SJM (2013) Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29:1492–1497PubMedPubMedCentralCrossRefGoogle Scholar
  24. Biswal AK, Hao Z, Pattathil S, Yang X, Winkeler K, Collins C, Mohanty SS, Richardson EA, Gelineo-Albersheim I, Hunt K, Ryno D, Sykes RW, Turner GB, Ziebell A, Gjersing E, Lukowitz W, Davis MF, Decker SR, Hahn MG, Mohnen D (2015) Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock. Biotechnol Biofuels 8:41PubMedPubMedCentralCrossRefGoogle Scholar
  25. Biswal AK, Soeno K, Gandla ML, Immerzeel P, Pattathil S, Lucenius J, Serimaa R, Hahn MG, Moritz T, Jönsson LJ, Israelsson-Nordström M, Mellerowicz EJ (2014) Aspen pectate lyase PtxtPL1-27 mobilizes matrix polysaccharides from woody tissues and improves saccharification yield. Biotechnol Biofuels 7:11PubMedPubMedCentralCrossRefGoogle Scholar
  26. Bjurhager I, Olsso A-M, Zhang B, Gerber L, Kumar M, Berglund LA, Burgert I, Sundberg B, Salmén L (2010) Ultrastructure and mechanical properties of Populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromolecules 11:2359–2365PubMedCrossRefGoogle Scholar
  27. Boeckler GA, Towns M, Unsicker SB, Mellway RD, Yip L, Hilke I, Gershenzon J, Constabel CP (2014) Transgenic upregulation of the condensed tannin pathway in poplar leads to a dramatic shift in leaf palatability for two tree-feeding Lepidoptera. J Chem Ecol 40:150–158PubMedCrossRefGoogle Scholar
  28. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA testing. Science 333:1843–1846PubMedCrossRefGoogle Scholar
  29. Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043PubMedCrossRefGoogle Scholar
  30. Bomal C, Bedon F, Caron S, Mansfield SD, Levasseur C, Cooke JEK, Blais S, Trembley L, Morency M-J, Pavy N, Grima-Pettenati J, Séquin A, MacKay J (2008) Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis. J Exp Bot 59:3925–3939PubMedPubMedCentralCrossRefGoogle Scholar
  31. Bonawitz ND, Chapple C (2013) Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Curr Opin Biotechnol 24:336–343PubMedCrossRefGoogle Scholar
  32. Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C-M, van Lammeren AAM, Miki BLA, Custers JBM, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749PubMedPubMedCentralCrossRefGoogle Scholar
  33. Brunner AM, Li J, DiFazio SP, Shevchenko O, Montgomery BE, Mohamed R, Wei H, Ma C, Elias AA, VanWormer K, Strauss SH (2007) Genetic containment of forest plantations. Tree Genet Genomes 3:75–100CrossRefGoogle Scholar
  34. Burnworth E (2002) A brief history of the efforts of Stronghold, Inc to restore the American chestnut: 1969 to present. Stronghold, Inc., Dickerson, MarylandGoogle Scholar
  35. Butt HI, Yang Z, Gong Q, Chen E, Wang X, Zhao G, Ge X, Zhang X, Li F (2017) GaMYB85, an R2R3 MYB gene, in transgenic Arabidopsis plays an important role in drought tolerance. BMC Plant Biol 17:142PubMedPubMedCentralCrossRefGoogle Scholar
  36. Campbell MM, Brunner AM, Jones HM, Strauss SH (2003) Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotechnol J 1:141–154PubMedCrossRefGoogle Scholar
  37. Carraway DT, Wilde HD, Merkle SA (1994) Somatic embryogenesis and gene transfer in American chestnut. J Am Chest Found 8:29–33Google Scholar
  38. Castellanos-Hernández OA, Rodríguez-Sahagún A, Acevedo-Hernández GJ, Herrera-Estrella LR (2011) Genetic transformation of forest trees. In: Alvarez M (ed) Genetic transformation. InTechOpen, London, pp 191–214Google Scholar
  39. Celedon JM, Yuen MMS, Chiang A, Henderson H, Reid KE, Bohlmann J (2017) Cell-type- and tissue-specific transcriptomes of the white spruce (Picea glauca) bark unmask fine-scale spatial patterns of constitutive and induced conifer defense. Plant J 92:710–726PubMedCrossRefGoogle Scholar
  40. Chandler JW (2012) Floral meristem initiation and emergence in plants. Cell Mol Life Sci 69:3807–3818PubMedCrossRefGoogle Scholar
  41. Chauhan RD, Veale A, Ma C, Strauss SH, Myburg AA (2014) Genetic transformation of Eucalyptus—challenges and future prospects. In: Ramawat KG, Mérillon J-M, Ahuja MR (eds) Tree biotechnology. CRC Press, Boca Raton, pp 392–445Google Scholar
  42. Che D, Meagher RB, Rugh CL, Kim T, Heaton ACP, Merkle SA (2006) Expression of organomercurial lyase in eastern cottonwood enhances organomercury resistance. In Vitro Cell Dev Biol Plant 42:228–234CrossRefGoogle Scholar
  43. Chinnusamy V, Ohta M, Kanrar S, Lee B-h, Hong X, Agarwal M, Zhu J-K (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054PubMedPubMedCentralCrossRefGoogle Scholar
  44. Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26:573–582PubMedCrossRefGoogle Scholar
  45. Coleman HD, Canam T, Kang K-Y, Ellis DD, Mansfield SD (2007) Over-expression of UDP-glucose pyrophosphorylase in hybrid poplar affects carbon allocation. J Exp Bot 58:4257–4268PubMedCrossRefGoogle Scholar
  46. Coleman HD, Cánovas FM, Man H, Kirby EG, Mansfield SD (2012) Enhanced expression of glutamine synthetase (GS1a) confers altered fiber and wood chemistry in field grown hybrid poplar (Populus tremula × alba) (717-1B4). Plant Biotechnol J 10:883–889PubMedCrossRefGoogle Scholar
  47. Coleman HD, Park J-Y, Nair R, Chapple C, Mansfield SD (2008a) RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proc Natl Acad Sci U S A 105:4501–4506PubMedPubMedCentralCrossRefGoogle Scholar
  48. Coleman HD, Samuels AL, Guy RD, Mansfield SD (2008b) Perturbed lignification impacts tree growth in hybrid poplar—a function of sink strength, vascular integrity, and photosynthetic assimilation. Plant Physiol 148:1229–1237PubMedPubMedCentralCrossRefGoogle Scholar
  49. Coleman HD, Yan J, Mansfield SD (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci U S A 106:13118–13123PubMedPubMedCentralCrossRefGoogle Scholar
  50. Confalonieri M, Balestrazzi A, Bisoffi S, Carbonera D (2003) In vitro culture and genetic engineering of Populus spp.: synergy for forest tree improvement. Plant Cell Tissue Organ Cult 72:109–138CrossRefGoogle Scholar
  51. Cooke BJ, Carroll AL (2017) Predicting the risk of mountain pine beetle spread to eastern pine forests: considering uncertainty in uncertain times. For Ecol Manag 396:11–25Google Scholar
  52. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033PubMedCrossRefGoogle Scholar
  53. Corredoira E, San-José MC, Ballester A, Vietiez AM (2005) Genetic transformation of Castanea sativa Mill. by Agrobacterium tumefaciens. Acta Hortic 693:387–393CrossRefGoogle Scholar
  54. Corredoira E, San José MC, Vieitez AM, Allona I, Aragoncillo C, Ballester A (2016) Agrobacterium-mediated transformation of European chestnut somatic embryos with a Castanea sativa (Mill.) endochitinase gene. New For 47:669–684CrossRefGoogle Scholar
  55. Corredoira E, San-José MC, Vietiez AM, Ballester A (2007) Improving genetic transformation of European chestnut and cryopreservation of transgenic lines. Plant Cell Tissue Organ Cult 91:281–288CrossRefGoogle Scholar
  56. Corredoira E, Valladares S, Allona I, Aragoncillo C, Vieitez AM, Ballester A (2012) Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds. Tree Physiol 32:1389–1402PubMedCrossRefGoogle Scholar
  57. Corredoira E, Valladares S, Vieitez AM, Ballester A (2015) Chestnut, European (Castanea sativa). In: Wang K (ed) Agrobacterium protocols, vol 2, Methods in molecular biology, vol 1224. Springer Sci Bus Media, New York, pp 163–176Google Scholar
  58. Cowling E, Young C (2013) Narrative history of the resistance screening center: it’s origins, leadership and partial list of public benefits and scientific contributions. Forests 4:666–692CrossRefGoogle Scholar
  59. da Silva ALL, de Oliveira Y, da Luz Costa J, de Souza Mudry C, Procopiuk M, Scheidt GN, Brondani GE (2011) Preliminary results for genetic transformation of shoot tip of Eucalyptus saligna Sm. via Agrobacterium tumefaciens. J Biotechnol Biodiv 2:1–6Google Scholar
  60. da Silva ALL, de Oliveira Y, Procopiuk M, de Souza Mudry C, Brondani GE, da Luz Costa J, Scheidt GN (2013) Transient expression of uidA gene in leaf explants of Eucalyptus saligna Sm. transformed via Agrobacterium tumefaciens. Biosci J (Uberlândia) 29:1–7Google Scholar
  61. Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751PubMedPubMedCentralCrossRefGoogle Scholar
  62. Dandekar AM, Fisk HJ, McGranahan GH, Uratsu SL, Bains H, Leslie CA, Escobar TM, Labavitch J, Grieve C, Gradziel T, Vail PV, Tebbets SJ, Sassa H, Tao R, Viss W, Driver J, James D, Passey A, Teo G (2002) Different genes for different folks in tree crops: what works and what does not. HortScience 37:281–286Google Scholar
  63. Dandekar AM, McGranahan GH, Vail PV, Uratsu SL, Leslie CA, Tebbets JS (1998) High levels of expression of full-length cryIA(c) gene from Bacillus thuringiensis in transgenic somatic walnut embryos. Plant Sci 131:181–193CrossRefGoogle Scholar
  64. Davis DD, Torsello ML, McClenahen JR (1997) Influence of Cryphonectria parasitica basal cankers on radial growth of scarlet oak in Pennsylvania. Plant Dis 81:369–373CrossRefGoogle Scholar
  65. de la Torre F, Rodríquez R, Jorge G, Villar B, Álvarez-Otero R, Grima-Pettenati J, Gallego PP (2014) Genetic transformation of Eucalyptus globulus using the vascular-specific EgCCR as an alternative to the constitutive CaMV35S promoter. Plant Cell Tissue Organ Cult 117:77–84CrossRefGoogle Scholar
  66. Del Rio JC, Marques G, Rencoret J, Martínez AT, Gutiérrez A (2007) Occurrence of naturally acetylated lignin units. J Agric Food Chem 55:5461–5468PubMedCrossRefGoogle Scholar
  67. Deng W, Luo K, Li Z, Yang Y (2009) A novel method for induction of plant regeneration via somatic embryogenesis. Plant Sci 177:43–48CrossRefGoogle Scholar
  68. Derba-Maceluch M, Awano T, Takahashi J, Lucenius J, Ratke C, Kontro I, Kallas Å, Busse-Wicher M, Kosik O, Tanaka R, Winzéll A, Kallas A, Leśniewska J, Berthold F, Immerzeel P, Teeri TT, Ezcurra I, Dupree P, Serimaa R, Mellerowicz EJ (2015) Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood. New Phytol 205:666–681PubMedCrossRefGoogle Scholar
  69. Dietz A (1978) The use of ionizing radiation to develop a blight resistant American chestnut, Castanea dentata, through induced mutations. In: MacDonald WL, Cech FC, Luchok J, Smith C (eds) Proc American chestnut symposium, West Virginia University Press, Morgantown, pp 17–20Google Scholar
  70. Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32:278–289PubMedCrossRefGoogle Scholar
  71. Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984PubMedPubMedCentralCrossRefGoogle Scholar
  72. Du J, Mansfield SD, Groover AT (2009) The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth. Plant J 60:1000–1014PubMedCrossRefGoogle Scholar
  73. Du N, Liu X, Li Y, Chen S, Zhang J, Ha D, Deng W, Sun C, Zhang Y, Pijut PM (2012) Genetic transformation of Populus tomentosa to improve salt tolerance. Plant Cell Tissue Organ Cult 108:181–189CrossRefGoogle Scholar
  74. Du N, Pijut PM (2009) Agrobacterium-mediated transformation of Fraxinus pennsylvanica hypocotyls and plant regeneration. Plant Cell Rep 28:915–923PubMedCrossRefGoogle Scholar
  75. Dubouzet JG, Strabala TJ, Wagner A (2013) Potential transgenic routes to increase tree biomass. Plant Sci 212:72–101PubMedCrossRefGoogle Scholar
  76. Dutt M, Barthe G, Irey M, Grosser J (2015) Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; citrus greening). PLoS One 10:e0137134PubMedPubMedCentralCrossRefGoogle Scholar
  77. Dutt M, Omar A, Orbovic V, Barthe G, Gmittier J, Vasconcellos M, Dunning C, Grosser JW (2008) Combating Huanglongbing and canker via genetic engineering of citrus. Proc Fla State Hort Soc 121:124–129Google Scholar
  78. Elias AA, Busov VB, Kosola KR, Ma C, Etherington E, Shevchenko O, Gandhi H, Pearce DW, Rood SB, Strauss SH (2012) Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar. Plant Physiol 160:1130–1144PubMedPubMedCentralCrossRefGoogle Scholar
  79. Elorriaga E, Klocko AL, Ma C, Strauss S (2016) Asexual gene drive in Populus? Results from CRISPR/Cas9 mutagenesis of floral genes for genetic containment. Plant and Animal Genomes Conference, San Diego Google Scholar
  80. Elorriaga E, Klocko AL, Ma C, Strauss SH (2018) Variation in mutation spectra among CRISPR/Cas9 mutagenized poplars. Front Plant Sci 9(2018):594PubMedPubMedCentralCrossRefGoogle Scholar
  81. Elorriaga E, Meilan R, Ma C, Skinner JS, Etherington E, Brunner A, Strauss SH (2014) A tapetal ablation transgene induces stable male sterility and slows field growth in Populus. Tree Genet Genomes 10:1583–1593CrossRefGoogle Scholar
  82. Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788PubMedCrossRefGoogle Scholar
  83. Etchells JP, Mishra LS, Kumar M, Campbell L, Turner SR (2015) Wood formation in trees is increased by manipulating PXY-regulated cell division. Curr Biol 25:1050–1055PubMedPubMedCentralCrossRefGoogle Scholar
  84. Etchells JP, Turner SR (2010) The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137:767–774PubMedCrossRefGoogle Scholar
  85. Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI, Yang F, Mitra P, Sun L, Çetinkol O, Chabout S, Mouille G, Soubigou-Taconnat L, Balzergue S, Singh S, Holmes BM, Mukhopadhyay A, Keasling JD, Simmons BA, Lapierre C, Ralph J, Loque D (2012) Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol 10:609–620CrossRefGoogle Scholar
  86. Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217PubMedPubMedCentralCrossRefGoogle Scholar
  87. Fang H, Wang G (2000) Somatic embryogenesis of Juglans nigra L. and establishment of gene transformation system of walnut. Acta Hort Sin 27:406–411Google Scholar
  88. FAO (2010) Forests and genetically modified trees. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  89. Fauser F, Roth N, Pacher M, Ilg G, Sánchez-Fernández R, Biesgen C, Puchta H (2012) In planta gene targeting. Proc Natl Acad Sci U S A 109:7535–7540PubMedPubMedCentralCrossRefGoogle Scholar
  90. Fernando DD, Richards JL, Kikkert JR (2006) In vitro germination and transient GFP expression of American chestnut (Castanea dentata) pollen. Plant Cell Rep 25:450–456PubMedCrossRefGoogle Scholar
  91. Fernando SC, Goodger JQD, Gutierrez SS, Johnson AAT, Woodrow IE (2016) Plant regeneration through indirect organogenesis and genetic transformation of Eucalyptus polybractea R.T. Baker. Ind Crop Prod 86:73–78CrossRefGoogle Scholar
  92. Ferreira SA, Pitz KY, Manshardt R, Zee F, Fitch M (2002) Virus coat protein transgenic papaya provides practical control of papaya ringspot virus in Hawaii. Plant Dis 86:101–105CrossRefGoogle Scholar
  93. Fillatti JJ, Sellmer J, McCown B, Haissig B, Comai L (1987) Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet 206:192–199CrossRefGoogle Scholar
  94. Flachowsky H, Hanke M-V, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226CrossRefGoogle Scholar
  95. Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh.). Plant Breed 126:137–145CrossRefGoogle Scholar
  96. Flachowsky H, Szankowski I, Waidmann S, Peil A, Tränkner C, Hanke M-V (2012) The MdTFL1 gene of apple (Malus × domestica Borkh.) reduces vegetative growth and generation time. Tree Physiol 32:1288–1301PubMedCrossRefGoogle Scholar
  97. Fladung M, Becker D (2010) Targeted integration and removal of transgenes in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) using site-specific recombination systems. Plant Biol 12:334–340PubMedCrossRefGoogle Scholar
  98. Florez SL, Erwin RL, Maximova SN, Guiltinan MJ, Curtis WR (2015) Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biol 15:121PubMedPubMedCentralCrossRefGoogle Scholar
  99. Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C (2000) Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J 22:223–234PubMedCrossRefGoogle Scholar
  100. Freiman A, Shlizerman L, Golobovitch S, Yablovitz Z, Korchinsky R, Cohen Y, Samach A, Chevreau E, Le Roux P-M, Patocchi A, Flaishman MA (2012) Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta 235:1239–1251PubMedCrossRefGoogle Scholar
  101. Frigimelica G, Faccoli M (1999) Preliminary report on the occurrence of Cryphonectria parasitica (Murrill) Barr on different tree species in Friuli Venezia-Giulia (Italy). Acta Hortic 494:467–472CrossRefGoogle Scholar
  102. Fry SC (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol 161:641–675CrossRefGoogle Scholar
  103. Gallardo F, Fu J, Cantón FR, Garcia-Gutiérrez A, Cánovas FM, Kirby EG (1999) Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210:19–26PubMedCrossRefGoogle Scholar
  104. Gerber L, Zhang B, Roach M, Rende U, Gorzsás A, Kumar M, Burgert I, Niittylä T, Sundberg B (2014) Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers. New Phytol 203:1220–1230PubMedCrossRefGoogle Scholar
  105. Gonsalves D (1998) Control of papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36:415–437PubMedCrossRefGoogle Scholar
  106. Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O'Brien JV, Chambers SA, Adams WR Jr, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618PubMedPubMedCentralCrossRefGoogle Scholar
  107. Gou J, Ma C, Kadmiel M, Gai Y, Strauss S, Jiang X, Busov V (2011) Tissue-specific expression of Populus C19 GA 2-oxidases differentially regulate above- and below-ground biomass growth through control of bioactive GA concentrations. New Phytol 192:626–639PubMedCrossRefGoogle Scholar
  108. Grace LJ, Charity JA, Gresham B, Kay N, Walter C (2005) Insect-resistant transgenic Pinus radiata. Plant Cell Rep 24:103–111PubMedCrossRefGoogle Scholar
  109. Guo C-H, Zhao S-T, Ma Y, Hu J-J, Han X-J, Chen J, Lu M-Z (2012) Bacillus thuringiensis Cry3Aa fused to a cellulase-binding peptide shows increased toxicity against the longhorned beetle. Appl Microbiol Biotechnol 93:1249–1256PubMedCrossRefGoogle Scholar
  110. Guo L, Xu W, Zhang Y, Zhang J, Wei Z (2017) Inducing triploids and tetraploids with high temperatures in Populus sect. Tacamahaca. Plant Cell Rep 36:313–326PubMedCrossRefGoogle Scholar
  111. Haberman A, Bakhshian O, Cerezo-Medina S, Paltiel J, Adler C, Ben-Ari G, Mercado JA, Pliego-Alfaro F, Lavee S, Samach A (2017) A possible role for flowering locus T-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction. Plant Cell Environ 40:1263–1280PubMedCrossRefGoogle Scholar
  112. Häggman H, Sutela S, Fladung M (2016) Genetic engineering contribution to forest tree breeding efforts. In: Vettori C, Gallardo F, Häggman H, Kazana V, Migliacci F, Pilate G, Fladung M (eds) Biosafety of forest transgenic trees. Springer, Dordrecht, pp 11–29CrossRefGoogle Scholar
  113. Hajeri S, Killiny N, El-Mohtar C, Dawson WO, Gowda S (2014) Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Daiphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). J Biotechnol 176:42–49PubMedCrossRefGoogle Scholar
  114. Hammerbacher A, Paetz C, Wright LP, Fischer TC, Bohlmann J, Davis AJ, Fenning TM, Gershenzon J, Schmidt A (2014) Flavan-3-ols in Norway spruce: biosynthesis, accumulation, and function in response to attack by the bark beetle-associated fungus Ceratocystis polonica. Plant Physiol 164:2107–2122PubMedPubMedCentralCrossRefGoogle Scholar
  115. Han KM, Dharmawardhana P, Arias RS, Ma C, Busov V, Strauss SH (2011) Gibberellin-associated cisgenes modify growth, stature and wood properties in Populus. Plant Biotechnol J 9:162–178PubMedCrossRefGoogle Scholar
  116. Harcourt RL, Kyozuka J, Floyd RB, Bateman KS, Tanaka H, Decroocq V, Llewellyn DJ, Zhu X, Peacock WJ, Dennis ES (2000) Insect- and herbicide-resistant transgenic eucalypts*. Mol Breed 6:307–315CrossRefGoogle Scholar
  117. Havir EA, Anagnostakis SL (1983) Oxalate production by virulent but not by hypovirulent strains of Endothia parasitica. Physiol Plant Pathol 23:369–376CrossRefGoogle Scholar
  118. Helliwell EE, Vega-Arreguín J, Shi Z, Bailey B, Xiao S, Maximova SN, Tyler BM, Guiltinan MJ (2016) Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins. Plant Biotechnol J 14:875–886PubMedCrossRefGoogle Scholar
  119. Hertzberg M, Bhalerao R, Jonsén D, Möller L, Jonsson P (2015a) Woody plants having improved growth characteristics and methods for making the same using transcription factors. US Patent 8937219 B2Google Scholar
  120. Hertzberg M, Sandberg G, Schrader J, Jonsén CD (2015b) Woody plants having improved growth characteristics and methods for making the same. US Patent 9018448 B2Google Scholar
  121. Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807PubMedCrossRefGoogle Scholar
  122. Hinchee M, Rottmann W, Mullinax L, Zhang C, Chang S, Cunnigham M, Pearson L, Nehra N (2009) Short-rotation woody crops for bioenergy and biofuels applications. In Vitro Cell Dev Biol Plant 45:619–629PubMedPubMedCentralCrossRefGoogle Scholar
  123. Hinchee M, Zhang C, Chang S, Cunningham M, Hammond W, Nehra N (2011) Biotech Eucalyptus can sustainably address society’s need for wood: the example of freeze tolerant Eucalyptus in the southeastern U.S. BMC Proc 5:124CrossRefGoogle Scholar
  124. Hinchee MAW, Connor-Ward DV, Newell CA, McDonell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. BioTechnol 6:915–922Google Scholar
  125. Hoenicka H, Lehnhardt D, Briones V, Nilsson O, Fladung M (2016) Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.). Tree Physiol 36:667–677PubMedPubMedCentralCrossRefGoogle Scholar
  126. Hu J, Wang L, Yan D, Lu M-Z (2014) Research and application of transgenic poplar in China. In: Fenning T (ed) Challenges and opportunities for the world’s forests in the 21st century. Springer, Netherlands, pp 567–584CrossRefGoogle Scholar
  127. Hu JJ, Liu QY, Wang KS, Zhang BE, Tian YC, Han YF (1999) Field test on insect resistance of transgenic plants (Populus nigra) transformed with Bt toxin gene. For Res 12:202–205Google Scholar
  128. Hu JJ, Tian YC, Han YF, Li L, Zhang BE (2001) Field evaluation of insect-resistant transgenic Populus nigra trees. Euphytica 121:123–127CrossRefGoogle Scholar
  129. Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5:224–229PubMedCrossRefGoogle Scholar
  130. Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD (2003) Significant increases in pulping efficiency in C4H-F5H transformed poplars: improved chemical savings and reduced environmental toxins. J Agric Food Chem 51:6178–6183PubMedCrossRefGoogle Scholar
  131. Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA (2011) SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol 11:173PubMedPubMedCentralCrossRefGoogle Scholar
  132. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106PubMedCrossRefGoogle Scholar
  133. James C (2015) 20th Anniversary (1996 to 2015) of the global commercialization of biotech crops and biotech crop highlights in 2015. ISAAA Brief No. 51. ISAAA, IthacaGoogle Scholar
  134. Jarvis MC (1984) Structure and properties of pectin gels in plant cell walls. Plant Cell Environ 7:153–164Google Scholar
  135. Jeon H-W, Cho J-S, Park E-J, Han K-H, Choi Y-I, Ko J-H (2016) Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar. Plant Biotechnol J 14:1161–1170PubMedCrossRefGoogle Scholar
  136. Jia C, Zhao H, Wang H, Xing Z, Du K, Song Y, Wei J (2004) Obtaining the transgenic poplars with low lignin content through down-regulation of 4CL. Chin Sci Bull 49:905–909Google Scholar
  137. Jia H, Orbovic V, Jones JB, Wang N (2016) Modification of the PthA4 effector binding elements in type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection. Plant Biotechnol J 14:1291–1301PubMedCrossRefGoogle Scholar
  138. Jia H, Zhang Y, Orbovic V, Xu J, White FF, Jones JB, Wang N (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15:817–823PubMedPubMedCentralCrossRefGoogle Scholar
  139. Jin Y-L, Tang R-J, Wang H-H, Jiang C-M, Bao Y, Yang Y, Liang M-X, Sun Z-C, Kong F-J, Li B, Zhang H-X (2017) Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees. Plant Biotechnol J 15:1309–1321PubMedPubMedCentralCrossRefGoogle Scholar
  140. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821PubMedCrossRefGoogle Scholar
  141. Jing ZP, Gallardo F, Pascual MB, Sampalo R, Romero J, de Navarra AT, Cánovas FM (2004) Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol 164:137–145CrossRefGoogle Scholar
  142. John E, Maqbool A, Malik KA (2014) Optimization of Agrobacterium tumefaciens mediated transformation in Populus deltoides. Pak J Bot 46:1079–1086Google Scholar
  143. Johnson LPV (1939) The breeding of forest trees. For Chron 15:139–151CrossRefGoogle Scholar
  144. Joshi CP, Thammannagowda S, Fujino T, Gou J-Q, Avci U, Haigler CH, McDonnell LM, Mansfield SD, Mengesha B, Carpita NC, Harris D, Debolt S, Peter GF (2011) Perturbation of wood cellulose synthesis causes pleiotropic effects in transgenic aspen. Mol Plant 4:331–345PubMedCrossRefGoogle Scholar
  145. Kania T, Russenberger D, Peng S, Apel K, Melzer S (1997) FPF1 promotes flowering in Arabidopsis. Plant Cell 9:1327–1338PubMedPubMedCentralCrossRefGoogle Scholar
  146. Karel TH, Man G.(2017) Major forest insect and disease conditions in the United States: 2015. Forest Service, United States Department Agriculture, Forest Health Protection, WashingtonGoogle Scholar
  147. Karlen SD, Zhang C, Peck ML, Smith RA, Padmakshan D, Helmich KE, Free HCA, Lee S, Smith BG, Lu F, Sedbrook JC, Sibout R, Grabber JH, Runge TM, Mysore KS, Harris PJ, Bartley LE, Ralph J (2016) Monolignol ferulate conjugates are naturally incorporated into plant lignins. Sci Adv 2:e1600393PubMedPubMedCentralCrossRefGoogle Scholar
  148. Karvelis T, Gasiunas G, Young J, Bigelyte G, Silanskas A, Cigan M, Siksnys V (2015) Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol 16:253PubMedPubMedCentralCrossRefGoogle Scholar
  149. Kawaoka A, Matsunaga E, Endo S, Kondo S, Yoshida K, Shinmyo A, Ebinuma H (2003) Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen. Plant Physiol 132:1177–1185PubMedPubMedCentralCrossRefGoogle Scholar
  150. Kim Y-G, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160PubMedPubMedCentralCrossRefGoogle Scholar
  151. Kim Y-H, Kim MD, Choi YI, Park S-C, Yun D-J, Noh EW, Lee H-S, Kwak S-S (2011) Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance. Plant Biotechnol J 9:334–347PubMedCrossRefGoogle Scholar
  152. Kirst M (2014) Material and methods to increase plant growth and yield. US Patent Application US 20140201867 A1Google Scholar
  153. Kleczkowski LA (1994) Glucose activation and metabolism through UDP-glucose pyrophosphorylase in plants. Phytochemistry 37:1507–1515CrossRefGoogle Scholar
  154. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales APW, Li Z, Peterson RT, Yeh J-RJ, Aryee MJ, Joung JK (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485PubMedPubMedCentralCrossRefGoogle Scholar
  155. Klintenäs M, Pin PA, Benlloch R, Ingvarsson PK, Nilsson O (2012) Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage. New Phytol 196:1260–1273PubMedCrossRefGoogle Scholar
  156. Klocko AL, Borejsza-Wysocka E, Brunner AM, Shevchenko O, Aldwinckle H, Strauss SH (2016c) Transgenic suppression of AGAMOUS genes in apple reduces fertility and increases floral attractiveness. PLoS One 11:e0159421PubMedPubMedCentralCrossRefGoogle Scholar
  157. Klocko AL, Brunner AM, Huang J, Meilan R, Lu H, Ma C, Morel A, Zhao D, Ault K, Dow M, Howe G, Shevchenko O, Strauss SH (2016b) Containment of transgenic trees by suppression of LEAFY. Nat Biotechnol 34:918–922PubMedCrossRefGoogle Scholar
  158. Klocko AL, Ma C, Robertson S, Esfandiari E, Nilsson O, Strauss SH (2016a) FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus. Plant Biotechnol J 14:808–819PubMedCrossRefGoogle Scholar
  159. Klocko AL, Meilan R, James RR, Viswanath V, Ma C, Payne P, Miller L, Skinner JS, Oppert B, Cardineau GA, Strauss SH (2013) Bt-Cry3Aa transgene expression reduces insect damage and improves growth in field-grown hybrid poplar. Can J For Res 44:28–35Google Scholar
  160. Koester RP, Skoneczka JA, Cary TR, Diers BW, Ainsworth EA (2014) Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. J Exp Bot 65:3311–3321PubMedPubMedCentralCrossRefGoogle Scholar
  161. Kong L, Holtz CT, Nairn CJ, Houke H, Powell WA, Baier K, Merkle SA (2014) Application of airlift bioreactors to accelerate genetic transformation in American chestnut. Plant Cell Tissue Organ Cult 117:39–50CrossRefGoogle Scholar
  162. Kontunen-Soppela S, Sillanpää M, Tuhkanen E-M, Sutinen S, Kangasjärvi J, Vapaavuori E, Häggman H (2010) Photosynthetic characteristics in genetically modified sense-RbcS silver birch lines. J Plant Physiol 167:820–828PubMedCrossRefGoogle Scholar
  163. Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698PubMedCrossRefGoogle Scholar
  164. Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:857–861PubMedCrossRefGoogle Scholar
  165. Kumar M, Turner S (2015) Plant cellulose synthesis: CESA proteins crossing kingdoms. Phytochemistry 112:91–99PubMedCrossRefGoogle Scholar
  166. Lachance D, Hamel L-P, Pelletier F, Valéro J, Bernier-Cardou M, Chapman K, van Frankenhuyzen K, Séguin A (2007) Expression of a Bacillus thuringiensis cry1Ab gene in transgenic white spruce and its efficacy against the spruce budworm (Choristoneura fumiferana). Tree Genet Genomes 3:153–167CrossRefGoogle Scholar
  167. Lane BG (1994) Oxalate, germin, and the extracellular matrix of higher plants. FASEB J 8:294–301PubMedCrossRefGoogle Scholar
  168. Leplé J-C, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang K-Y, Kim H, Ruel K, Lefèbvre A, Josseleau J-P, Grima-Pettenati J, De Rycke R, Andersson-Gunnerás S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W (2007) Downregulation of cinnamoyl-coenzyme a reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691PubMedPubMedCentralCrossRefGoogle Scholar
  169. Lebedev V, Faskhiev V, Shestibratov K (2015) Lack of correlation between ammonium accumulation and survival of transgenic birch plants with pine cytosolic glutamine synthetase gene after “Basta” herbicide treatment. J Bot 2015:749356Google Scholar
  170. Lebedev VG, Schestibratov KA, Shadrina TE, Bulatova IV, Abramochkin DG, Miroshnikov AI (2010) Cotransformation of aspen and birch with three T-DNA regions from two different replicons in one Agrobacterium tumefaciens strain. Russ J Genet 46:1282–1289CrossRefGoogle Scholar
  171. LeBlanc MS, Lima A, Montello P, Kim T, Meagher RB, Merkle SA (2011) Enhanced arsenic tolerance of transgenic eastern cottonwood plants expressing gamma-glutamylcysteine synthetase. Int J Phytoremediation 13:657–673PubMedCrossRefGoogle Scholar
  172. Lee C, Teng Q, Huang W, Zhong R, Ye Z-H (2009) Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 50:1075–1089PubMedCrossRefGoogle Scholar
  173. Lemmetyinen J, Järvinen P, Pasonen H-L, Keinonen K, Lännenpää M, Keinänen M (2008) Birches. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants, Transgenic forest tree species, vol 9. Blackwell Publishing Ltd, West Sussex, pp 193–218CrossRefGoogle Scholar
  174. Leslie CA, Uratsu SL, McGranahan G, Dandekar AM (2006) Walnut (Juglans). In: Wang K (ed) Methods in molecular biology, vol 344, Agrobacterium protocols, vol 2. Humana Press, Totowa, pp 297–307CrossRefGoogle Scholar
  175. Li D, Song S, Xia X, Yin W (2012) Two CBL genes from Populus euphratica confer multiple stress tolerance in transgenic triploid white poplar. Plant Cell Tissue Organ Cult 109:477–489CrossRefGoogle Scholar
  176. Li H, Wu D, Wang Z, Liu F, Liu G, Jiang J (2016a) BpMADS12 mediates endogenous hormone signaling: effect on plant development Betula platyphylla. Plant Cell Tissue Organ Cult 124:169–180CrossRefGoogle Scholar
  177. Li H, Ye K, Shi Y, Cheng J, Zhang X, Yang S (2017) BZR1 positively regulates freeze tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis. Mol Plant 10:545–559PubMedCrossRefGoogle Scholar
  178. Li L, Zhou Y, Cheng X, Sum J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci U S A 100:4939–4944PubMedPubMedCentralCrossRefGoogle Scholar
  179. Li M, Li H, Jiang H, Wu G (2008) Establishment of a highly efficient Agrobacterium tumefaciens-mediated leaf disc transformation method for Broussonetia papyrifera. Plant Cell Tissue Organ Cult 93:249–255CrossRefGoogle Scholar
  180. Li M-R, Li Y, Li H-Q, Wu G-J (2011a) Ectopic expression of FaDREB2 enhances osmotic tolerance in paper mulberry. J Integr Plant Biol 53:951–960PubMedCrossRefGoogle Scholar
  181. Li Q, Min D, Wang JP-Y, Peszlen I, Horvath L, Horvath B, Nishimura Y, Jameel H, Chang H-M, Chiang VL (2011b) Down-regulation of glycosyltransferase 8D genes in Populus trichocarpa caused reduced mechanical strength and xylan content in wood. Tree Physiol 31:226–236PubMedCrossRefGoogle Scholar
  182. Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (2010) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372PubMedPubMedCentralCrossRefGoogle Scholar
  183. Li W, Hu W, Fang C, Chen L, Zhuang W, Katin-Grazzini L, McAvoy RJ, Guillard K, Li Y (2016b) An AGAMOUS intron-driven cytotoxin leads to flowerless tobacco and produces no detrimental effects on vegetative growth of either tobacco or poplar. Plant Biotechnol J 14:2276–2287PubMedPubMedCentralCrossRefGoogle Scholar
  184. Liang H, Frost CJ, Wei X, Brown NR, Carlson JE, Tien M (2008) Improved sugar release from lignocellulosic material by introducing a tyrosine-rich cell wall peptide gene in poplar. Clean 36:662–668Google Scholar
  185. Liang H, Maynard CA, Allen RD, Powell WA (2001) Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol Biol 45:619–629PubMedCrossRefGoogle Scholar
  186. Liang Q (2011) Forward. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology, joint FAO. IAEA, Vienna Austria, p 1Google Scholar
  187. Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261PubMedPubMedCentralCrossRefGoogle Scholar
  188. Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci U S A 103:6398–6403PubMedPubMedCentralCrossRefGoogle Scholar
  189. Lima MD, Eloy NB, Siqueira JA, Inze D, Hemerly AS, Ferreira PC (2017) Molecular mechanisms of biomass increase in plants. Biotechnol Res Innov 1:14–25CrossRefGoogle Scholar
  190. Lin C-Y, Li Q, Tunlaya-Anukit S, Shi R, Sun H-Y, Wang JP, Liu J, Loziuk P, Edmunds CW, Miller ZD, Peszlen I, Muddiman DC, Sederoff RR, Chiang VL (2016) A cell wall-bound anionic peroxidase, PtrPO21, is involved in lignin polymerization in Populus trichocarpa. Tree Genet Genomics 12:22CrossRefGoogle Scholar
  191. Lin M-K, Belanger H, Lee Y-J, Varkonyi-Gasic E, Taoka K-I, Miura E, Xoconostle-Cázares B, Gendler K, Jorgensen RA, Phinney B, Lough TJ, Lucas WJ (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19:1488–1506PubMedPubMedCentralCrossRefGoogle Scholar
  192. Lin Y-C, Li W, Sun Y-H, Kumari S, Wei H, Li Q, Tunlaya-Anukit S, Sederoff RR, Chiang VL (2013) SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa. Plant Cell 25:4324–4341PubMedPubMedCentralCrossRefGoogle Scholar
  193. Liu FH, Sun ZX, Cui DC, Du BX, Wang CR, Chen SY (2000) Cloning of E.coli mtl-D gene and its expression in transgenic Balizhuangyang (Populus). Acta Genet Sin 27:428–433PubMedGoogle Scholar
  194. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406PubMedPubMedCentralCrossRefGoogle Scholar
  195. Liu X, Pijut PM (2010) Agrobacterium-mediated transformation of mature Prunus serotina (black cherry) and regeneration of transgenic shoots. Plant Cell Tissue Organ Cult 101:49–57CrossRefGoogle Scholar
  196. Lotan T, Ohto M-a, Yee KM, West MAL, Lo R, Kwong RL, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205PubMedCrossRefGoogle Scholar
  197. Lowe K, Hoerster G, Sun X, Rasco-Gaunt S, Lazerri P, Abbitt S, Glassman K, Gordon-Kamm B (2002) Maize LEC1 improves transformation in both maize and wheat. In: Vasil IK (ed) Plant biotechnology 2002 and beyond. Kluwer Academic Publishers, Dordrecht, pp 255–258Google Scholar
  198. Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M-J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer PM, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao Z-Y, Xy D, Jones T, Gordon-Kamm W (2016) Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28:1998–2015PubMedCentralCrossRefPubMedGoogle Scholar
  199. Lu F, Marita JM, Lapierre C, Jouanin L, Morreel K, Boerjan W, Ralph J (2010) Sequencing around 5-hydroxyconiferyl alcohol-derived units in caffeic acid O-methlytransferase-deficient poplar lignins. Plant Physiol 153:569–579PubMedPubMedCentralCrossRefGoogle Scholar
  200. Lu H, Klocko AL, Dow M, Ma C, Amarasinghe V, Strauss SH (2016) Low frequency of zinc-finger nuclease-induced mutagenesis in Populus. Mol Breed 36:121CrossRefGoogle Scholar
  201. Lu H, Viswanath V, Ma C, Etherington E, Dharmawardhana P, Shevchenko O, Strauss SH, Pearce DW, Rood SB, Busov V (2015) Recombinant DNA modification of gibberellin metabolism alters growth rate and biomass allocation in Populus. Tree Genet Genomes 11:127CrossRefGoogle Scholar
  202. Lu M, Zhang P, Wang J, Kang X, Wu J, Wang X, Chen Y (2014) Induction of tetraploidy using high temperature exposure during the first zygote division in Populus adenopoda Maxim. Plant Growth Regul 72:279–287CrossRefGoogle Scholar
  203. Lu S, Li Q, Wei H, Chang M-J, Tunlaya-Anukit S, Kim H, Liu J, Song J, Sun Y-H, Yuan L, Yeh T-F, Peszlen I, Ralph J, Sederoff RR, Chiang VL (2013) Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci U S A 110:10848–10853PubMedPubMedCentralCrossRefGoogle Scholar
  204. Lyyra S, Meagher RB, Kim T, Heaton A, Montello P, Balish RS, Merkle SA (2007) Coupling two mercury resistance genes in eastern cottonwood enhances the processing of organomercury. Plant Biotechnol J 5:254–262PubMedCrossRefGoogle Scholar
  205. Maheshwari P, Kovalchuk I (2016) Agrobacterium-mediated stable genetic transformation of Populus angustifolia and Populus balsamifera. Front Plant Sci 7:296PubMedPubMedCentralCrossRefGoogle Scholar
  206. Mallón R, Valladares S, Corredoira E, Vieitez AM, Vidal N (2014) Overexpression of the chestnut CsTL1 gene coding for a thaumatin-like protein in somatic embryos of Quercus robur. Plant Cell Tiss Org Cult 116:141–151Google Scholar
  207. Mallón R, Vieitez AM, Vidal N (2013) High-efficiency Agrobacterium-mediated transformation in Quercus robur: selection by use of a temporary immersion system and assessment by quantitative PCR. Plant Cell Tissue Organ Cult 114:171–185CrossRefGoogle Scholar
  208. Maloney VJ, Mansfield SD (2010) Characterization and varied expression of a membrane-bound endo-β-1, 4-glucanase in hybrid poplar. Plant Biotechnol J 8:294–307PubMedCrossRefGoogle Scholar
  209. Maloney VJ, Park J-Y, Unda F, Mansfield SD (2015) Sucrose phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation. J Exp Bot 66:4383–4394PubMedPubMedCentralCrossRefGoogle Scholar
  210. Maloney VJ, Samuels AL, Mansfield SD (2012) The endo-1, 4-β-glucanase Korrigan exhibits functional conservation between gymnosperms and angiosperms and is required for proper cell wall formation in gymnosperms. New Phytol 193:1076–1087PubMedCrossRefGoogle Scholar
  211. Mansfield SD (2009) Solutions for dissolution – engineering cell walls for deconstruction. Curr Opin Biotechnol 20:286–294PubMedCrossRefGoogle Scholar
  212. Mansfield SD, Kang K-Y, Chapple C (2012) Designed for deconstruction—poplar trees altered in cell wall lignification improve the efficacy of bioethanol production. New Phytol 194:91–101PubMedCrossRefGoogle Scholar
  213. Marita JM, Ralph J, Lapierre C, Jouanin L, Boerjan W (2001) NMR characterization of lignins from transgenic poplars with suppressed caffeic acid O-methyltransferase activity. J Chem Soc Perkin Trans 1:2939–2945CrossRefGoogle Scholar
  214. Maruyama TE, Hosoi Y (2015) Somatic embryogenesis in Japanese black pine (Pinus thunbergii Parl.). In: Mujib A (ed) Somatic embryogenesis in ornamentals and its applications. Springer, India, pp 27–39Google Scholar
  215. Matsson M, Schjoerring JK (1997) Ammonia exchange between plants and the atmosphere: effects of ammonium supply to the roots, dark-induced senescence and reduced GS activity. In: Ando T, Fujita M, Mae T, Matsumoto H, Mori S, Sekiya J (eds) Plant nutrition for sustainable food production and environment, developments in plant and soil sciences, vol 78. Springer, Dordrecht, pp 827–831CrossRefGoogle Scholar
  216. Matsunaga E, Nanto K, Oishi M, Ebinuma H, Morishita Y, Sakurai N, Suzuki H, Shibata D, Shimada T (2012) Agrobacterium-mediated transformation of Eucalyptus globulus using explants with shoot apex with introduction of bacterial choline oxidase gene to enhance salt tolerance. Plant Cell Rep 31:225–235PubMedCrossRefGoogle Scholar
  217. Maynard CA, McGuigan LD, Oakes AD, Zhang B, Newhouse AE, Northern LC, Chartrand AM, Will LR, Baier KM, Powell WA (2015) Chestnut, American (Castanea dentata (Marsh.) Borkh.). In: Wang K (ed) Agrobacterium protocols, vol 2, Methods in molecular biology, vol 1224. Springer Sci Bus Media, New York, pp 143–161Google Scholar
  218. Maynard CA, Polin LD, LaPierre SL, Rothrock RE, Powell WA (2006) American chestnut (Castanea dentata (Marsh.) Borkh.). In: Wang K (ed) Methods in molecular biology, vol 344, Agrobacterium protocols, vol 2, 2nd edn. Humana Press Inc., Totowa, pp 239–251Google Scholar
  219. Maynard CA, Powell WA, Polin-McGuigan LD, Viéitez AM, Ballester A, Corredoira E, Merkle SA, Andrade GM (2008) Chestnut. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants, Transgenic forest tree species, vol 9. Blackwell Publishing Ltd, West Sussex, pp 169–192CrossRefGoogle Scholar
  220. McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol J 10:1011–1025PubMedCrossRefGoogle Scholar
  221. McKown AD, Klápště J, Guy RD, Geraldes A, Porth I, Hannemann J, Friedmann M, Muchero W, Tuskan GA, Ehlting J, Cronk QCB, El-Kassaby YA, Mansfield SD, Douglas CJ (2014) Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. New Phytol 203:535–553PubMedCrossRefGoogle Scholar
  222. McGarry RC, Klocko AL, Pang M, Strauss SH, Ayre BG (2017) Virus-induced flowering: an application of reproductive biology to benefit plant research and breeding. Plant Physiol 173:47–55PubMedCrossRefGoogle Scholar
  223. Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47:239–274PubMedCrossRefGoogle Scholar
  224. Mellway RD, Tran LT, Prouse MB, Campbell MM, Constabel CP (2009) The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes and R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar. Plant Physiol 150:924–941PubMedPubMedCentralCrossRefGoogle Scholar
  225. Mendonça EG, Stein VC, Balieiro FP, Lima CDF, Santos BR, Paiva LV (2013) Genetic transformation of Eucalyptus camaldulensis by Agrobolistic method. Rev Árvore 37:419–429CrossRefGoogle Scholar
  226. Merkle SA, Battle PJ (2000) Enhancement of embryogenic culture initiation from tissues of mature sweetgum trees. Plant Cell Rep 19:268–273CrossRefGoogle Scholar
  227. Merkle SA, Montello PM, Reece HM, Kong L (2014) Somatic embryogenesis and cryostorage of eastern hemlock and Carolina hemlock for conservation and restoration. Trees 28:1767–1776CrossRefGoogle Scholar
  228. Merkle SA, Narin CJ (2005) Hardwood tree biotechnology. In Vitro Cell Dev Biol Plant 41:602–619CrossRefGoogle Scholar
  229. Merkle SA, Neu KA, Battle PJ, Bailey RL (1998) Somatic embryogenesis and plantlet regeneration from immature and mature tissues of sweetgum (Liquidambar styraciflua). Plant Sci 132:169–178CrossRefGoogle Scholar
  230. Merkle SA, Wiecko AT, Watson-Pauley BA (1991) Somatic embryogenesis in American chestnut. Can J For Res 21:1698–1701CrossRefGoogle Scholar
  231. Meyermans H, Morreel K, Lapierre C, Pollet B, De Bruyn A, Busson R, Herdewijn P, Devreese B, Van Beeumen J, Marita JM, Ralph J, Chen C, Burrggraeve B, Van Montagu M, Messens E, Boerjan W (2000) Modification in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. J Biol Chem 275:36899–36909PubMedCrossRefGoogle Scholar
  232. Michler CH, Pijut PM, Meilan R, Smagh G, Liang X, Woeste KE (2008) Black walnut. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants, Transgenic forest tree species, vol 9. Wiley-Blackwell, Chichester, pp 263–278CrossRefGoogle Scholar
  233. Min D, Li Q, Jameel H, Chiang V, Chang H-M (2012) The cellulase-mediated saccharification on wood derived from transgenic low-lignin lines of black cottonwood (Populus trichocarpa). Appl Biochem Biotechnol 168:947–955PubMedCrossRefGoogle Scholar
  234. Min D, Yang C, Shi R, Jameel H, Chiang V, Chang H (2013) The elucidation of the lignin structure effect on the cellulase-mediated saccharification by genetic engineering poplars (Populus nigra L. × Populus maximowiczii a.). Biomass Bioenergy 58:52–57CrossRefGoogle Scholar
  235. Min D-Y, Li Q, Chiang V, Jameel H, Chang H-M, Lucia L (2014b) The influence of lignin-carbohydrate complexes on the cellulase-mediated saccharification I: transgenic black cottonwood (western balsam poplar, California poplar) P. trichocarpa including the xylan down-regulated and the lignin down-regulated lines. Fuel 119:207–213CrossRefGoogle Scholar
  236. Min D-Y, Yang C, Chiang V, Jameel H, Chang H-M (2014a) The influence of lignin-carbohydrate complexes on the cellulase-mediated saccharification II: transgenic hybrid poplars (Populus nigra L. × Populus maximowiczii A.). Fuel 116:56–62CrossRefGoogle Scholar
  237. Mohamed R, Wang C-T, Ma C, Shevchenko O, Dye SJ, Puzey JR, Etherington E, Sheng X, Meilan R, Strauss SH, Brunner AM (2010) Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J 62:674–688PubMedCrossRefGoogle Scholar
  238. Morreel K, Ralph J, Kim H, Lu F, Goeminne G, Ralph S, Messens E, Boerjan W (2004) Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem. Plant Physiol 136:3537–3549PubMedPubMedCentralCrossRefGoogle Scholar
  239. Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield SD (2016) Designer lignins: harnessing the plasticity of lignification. Curr Opin Biotechnol 37:190–200PubMedCrossRefGoogle Scholar
  240. Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan ARK, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye C-Y, Li T, Sterck L, Vanneste K, Mutate F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ Jr, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar DS, Schmutz J (2014) The genome of Eucalyptus grandis. Nature 510:356–362PubMedCrossRefGoogle Scholar
  241. Nardmann J, Werr W (2006) The shoot stem cell niche in angiosperms: expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution. Mol Biol Evol 23:2492–2504PubMedCrossRefGoogle Scholar
  242. Neale DB, McGuire PE, Wheeler VC, Stevens KA, Crepeau MW, Cardeno C, Zimin AV, Puiu D, Pertea GM, Sezen UU, Casola C, Koralewski TE, Paul R, Gonzalez-Ibeas D, Zaman S, Cronn R, Yandell M, Holt C, Langley CH, Yorke JA, Salzberg SL, Wegrzyn JL (2017) The Douglas-fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae. Genes Genomes Genetics 7:3157–3167PubMedGoogle Scholar
  243. Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD, Martínez-García PJ, Vasquez-Gross HA, Lin BY, Zieve JJ, Dougherty WM, Fuentes-Soriano S, Wu L-S, Gilbert D, Marçais G, Roberts M, Holt C, Yandell M, Davis JM, Smith KE, Dean JFD, Lorenz WW, Whetten RW, Sederoff R, Wheeler N, McGuire PE, Main D, Loopstra CA, Mockaitis K, deJong PJ, Yorke JA, Salzberg SL, Langley CH (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:R59PubMedPubMedCentralCrossRefGoogle Scholar
  244. Nehra NS, Becwar MR, Rottmann WH, Pearson L, Chowdhury K, Chang S, Wilde HD, Kodrzycki RJ, Zhang C, Gause KC, Parks DW, Hinchee MA (2005) Forest biotechnology: innovative methods, emerging opportunities. In Vitro Cell Dev Biol Plant 41:701–717CrossRefGoogle Scholar
  245. Newhouse AE, Kaczmar NS, Maynard CA, Powell WA (2008) American elm. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants, Transgenic forest tree species, vol 4. Wiley-Blackwell, Chichester, pp 241–262CrossRefGoogle Scholar
  246. Newhouse AE, Polin-McGuigan LD, Baier KA, Valletta KER, Rottmann WH, Tschaplinski TJ, Maynard CA, Powell WA (2014) Transgenic American chestnuts show enhanced blight resistance and transmit the trait to T1 progeny. Plant Sci 228:88–97PubMedCrossRefGoogle Scholar
  247. Newhouse AE, Schrodt F, Liang H, Maynard CA, Powell WA (2007) Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization. Plant Cell Rep 26:977–987PubMedCrossRefGoogle Scholar
  248. Newhouse AE, Schrodt F, Maynard CA, Powell WA (2006) American elm (Ulmus americana). In: Wang K (ed) Methods in molecular biology, vol 344, Agrobacterium protocols, vol 2, 2nd edn. Humana Press Inc., Totowa, pp 99–112CrossRefGoogle Scholar
  249. Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Höfte H (1998) A plasma membrane-bound putative endo-1, 4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J 17:5563–5576PubMedPubMedCentralCrossRefGoogle Scholar
  250. Niskanen A-M, Kärkkäinen K, Pasonen H (2011) Comparison of variation in adaptive traits between wild-type and transgenic silver birch (Betula pendula) in a field trial. Tree Genet Genomes 7:955–967CrossRefGoogle Scholar
  251. Niu S, Li Z, Yuan H, Fang P, Chen X, Li W (2013) Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco. J Exp Bot 64:3411–3424PubMedPubMedCentralCrossRefGoogle Scholar
  252. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hällman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Käller M, Luthman J, Lysholm F, Niittylä T, Olson A, Rilakovic N, Ritland C, Rosselló JA, Sena J, Svensson T, Talavera-López C, Theißen G, Tuominen H, Vanneste K, Wu Z-Q, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R, Hvidsten TR, deJong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584PubMedCrossRefGoogle Scholar
  253. Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa K-I (2006) Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15:637–646PubMedCrossRefGoogle Scholar
  254. Ó’Maoiléidigh DS, Graciet E, Wellmer F (2014) Gene networks controlling Arabidopsis thaliana flower development. New Phytol 201:16–30PubMedCrossRefGoogle Scholar
  255. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, Moore TA, Moroney J, Niyogi KK, Parry MAJ, Peralta-Yahya PP, Prince RC, Redding KE, Spalding MH, van Wijk KJ, Vermaas WFJ, von Caemmerer S, Weber APM, Yeates TO, Yuan JS, Zhu XG (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci U S A 112:8529–8536PubMedPubMedCentralCrossRefGoogle Scholar
  256. Palla KJ, Pijut PM (2015) Agrobacterium-mediated genetic transformation of Fraxinus americana hypocotyls. Plant Cell Tissue Organ Cult 120:631–641CrossRefGoogle Scholar
  257. Pasonen H-L, Lu J, Niskanen A-M, Seppänen S-K, Rytkönen A, Raunio J, Pappinen A, Kasanin R, Timonen S (2009) Effects of sugar beet chitinase IV on root-associated fungal community of transgenic silver birch in a field trial. Planta 230:973–983PubMedCrossRefGoogle Scholar
  258. Pelloux J, Rustérucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277PubMedCrossRefGoogle Scholar
  259. Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15:1509–1519PubMedPubMedCentralCrossRefGoogle Scholar
  260. Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F, Liu S, Le Bris P, Antelme S, Santoro N, Wilkerson CG, Sibout R, Lapierre C, Ralph J, Sadbrook JC (2014) p-Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon. Plant J 77:713–726PubMedPubMedCentralCrossRefGoogle Scholar
  261. Pettersen RC (1984) The chemical composition of wood. In: Rowell RM (ed) The chemistry of solid wood. Advances in chemistry series, vol 207. American Chemical Society, Washington, DC, pp 57–126CrossRefGoogle Scholar
  262. Plasencia A, Soler M, Dupas A, Ladouce N, Silva-Martins G, Martinez Y, Lapierre C, Franche C, Truchet I, Grima-Pettenati J (2016) Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotechnol J 14:1381–1393PubMedCrossRefGoogle Scholar
  263. Polin LD, Liang H, Rothrock RE, Nishii M, Diehl DL, Newhouse AE, Nairn CJ, Powell WA, Maynard CA (2006) Agrobacterium-mediated transformation of American chestnut (Castanea dentata (marsh.) Borkh.) somatic embryos. Plant Cell Tissue Organ Cult 84:69–79CrossRefGoogle Scholar
  264. Porth I, Klapšte J, Skyba O, Hannemann J, McKown AD, Guy RD, DiFazio SP, Muchero W, Ranjan P, Tuskan GA, Friedmann MC, Ehlting J, Cronk QCB, El-Kassaby YA, Douglas CJ, Mansfield SD (2013) Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms. New Phytol 200:710–726PubMedCrossRefGoogle Scholar
  265. Qiao G, Zhou J, Jiang J, Sun Y, Pan L, Song H, Jiang J, Zhuo R, Wang X, Sun Z (2010) Transformation of Liquidambar formosana L. via Agrobacterium tumefaciens using a mannose selection system and recovery of salt tolerant lines. Plant Cell Tissue Organ Cult 102:163–170CrossRefGoogle Scholar
  266. Ralph J (2010) Hydroxycinnamates in lignification. Phytochem Rev 9:65–83CrossRefGoogle Scholar
  267. Ralph J, Akiyama T, Coleman HD, Mansfield SD (2012) Effects on lignin structure of coumarate 3-hydroxylase downregulation in poplar. Bioenerg Res 5:1009–1019CrossRefGoogle Scholar
  268. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev 3:29–60CrossRefGoogle Scholar
  269. Rennie EA, Scheller HV (2014) Xylan biosynthesis. Curr Opin Biotechnol 26:100–107PubMedCrossRefGoogle Scholar
  270. Roach M, Gerber L, Sandquist D, Gorzsás A, Hedenström M, Kumar M, Steinhauser MC, Feil R, Daniel G, Stitt M, Sundberg B, Nittylä T (2012) Fructokinase is required for carbon partitioning to cellulose in aspen wood. Plant J 70:967–977PubMedCrossRefGoogle Scholar
  271. Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480PubMedCrossRefGoogle Scholar
  272. Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368PubMedCrossRefGoogle Scholar
  273. Rothrock RE, Polin-McGuigan LD, Newhouse AE, Powell WA, Maynard CA (2007) Plate flooding as an alternative Agrobacterium-mediated transformation method for American chestnut somatic embryos. Plant Cell Tissue Organ Cult 88:93–99CrossRefGoogle Scholar
  274. Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma C, Cheng S, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J 22:235–245PubMedCrossRefGoogle Scholar
  275. Rubinelli PM, Chuck G, Li X, Meilan R (2013) Constitutive expression of the Corngrass1 microRNA in poplar affects plant architecture and stem lignin content and composition. Biomass Bioenergy 54:312–321CrossRefGoogle Scholar
  276. Sahni S, Prasad BD, Liu Q, Grbic V, Sharpe A, Singh SP, Krishna P (2016) Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep 6:28298PubMedPubMedCentralCrossRefGoogle Scholar
  277. Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17:6086–6095PubMedPubMedCentralCrossRefGoogle Scholar
  278. Sato S, Kato T, Kakegawa K, Ishii T, Liu Y-G, Awano T, Takabe K, Nishiyama Y, Kuga S, Sato S, Nakamura Y, Tabata S, Shibata D (2001) Role of the putative membrane-bound endo-1, 4-β-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana. Plant Cell Physiol 42:251–263PubMedCrossRefGoogle Scholar
  279. Schmidt A, Wächtler B, Temp U, Krekling T, Séguin A, Gershenzon J (2010) A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiol 152:639–655PubMedPubMedCentralCrossRefGoogle Scholar
  280. Schmidt M, Schwartzberg AM, Perera PN, Weber-Bargioni A, Carroll A, Sarkar P, Bosneaga E, Urban JJ, Song J, Balakshin MY, Capanema EA, Auer M, Adams PD, Chiang VL, Schuck PJ (2009) Label-free in situ imaging of lignification in the cell wall of low lignin transgenic Populus trichocarpa. Planta 230:589–597PubMedPubMedCentralCrossRefGoogle Scholar
  281. Schmidt R (2003) Fusiform rust of southern pines: a major success for forest disease management. Phytopathology 93:1048–1051PubMedCrossRefGoogle Scholar
  282. Schwander T, von Borzyskowski LS, Burgener S, Cortina NS, Erb TJ (2016) A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354:900–904PubMedPubMedCentralCrossRefGoogle Scholar
  283. Scorza R, Callahan A, Dardick C, Ravelonandro M, Polak J, Malinowski T, Zagrai I, Cambra M, Kamenova I (2013) Genetic engineering of Plum pox virus resistance: ‘HoneySweet’ plum – from concept to product. Plant Cell Tissue Organ Cult 115:1–12CrossRefGoogle Scholar
  284. Scorza R, Ravelonandro M, Callahan A, Zagrai I, Polak J, Malinowski T, Cambra M, Levy L, Damsteegt V, Krška B, Cordts J, Gonsalves D, Dardick C (2016) HoneySweet’ (C5), the first genetically engineered Plum pox virus–resistant plum (Prunus domestica L.) cultivar. HortScience 51:601–603Google Scholar
  285. Seppänen S-K, Pasonen H-L, Vauramo S, Vahala J, Toikka M, Kilpeläinen I, Setälä H, Teeri TH, Timonen S, Pappinen A (2007) Decomposition of the leaf litter and mycorrhiza forming ability of silver birch with a genetically modified lignin biosynthesis pathway. Appl Soil Ecol 36:100–106CrossRefGoogle Scholar
  286. Shao Z, Chen W, Luo H, Ye XF, Zhang J (2002) Studies on the introduction of the cecrpin d gene into Eucalyptus urophylla to breed the resistant varieties to Pseudomonas solanacearum. Sci Silvae Sin 38:92–97Google Scholar
  287. Sheikh Beig Goharrizi MA, Dejahang A, Tohidfar M, Izadi Darbandi A, Carillo N, Hajirezaei MR, Vahdat K (2016) Agrobacterium mediated transformation of somatic embryos of Persian walnut using fld gene for osmotic stress tolerance. J Agric Sci Technol 18:423–435Google Scholar
  288. Shen J-L, Li Y, Jiang J-Z, Chen S-Y (2008) Establishment of a transgenic system in fast-growing black locust (Robinia pseudoacacia L.). For Stud China 10:243–252CrossRefGoogle Scholar
  289. Shi Q, Liu P, Liu M, Wang J, Zhao J, Zhao Z, Dai L (2016) In vivo fast induction of homogeneous autopolyploids via callus in sour jujube (Ziziphus acidojujuba Cheng et Liu). Hortic Plant J 2:147–153CrossRefGoogle Scholar
  290. Shi Q-H, Liu P, Liu M-J, Wang J-R, Xu J (2015) A novel method for rapid in vivo induction of homogeneous polyploids via calluses in a woody fruit tree (Ziziphus jujuba mill.). Plant Cell Tissue Organ Cult 121:423–433CrossRefGoogle Scholar
  291. Shi X-X, Du G-Q, Wang X-M, Pei D (2012) Studies on gene transformation via pollen tube pathway in walnut. Acta Hortic Sin 39:1243–1252Google Scholar
  292. Siedlecka A, Wiklund S, Péronne M-A, Micheli F, Leśniewska J, Sethson I, Edlund U, Richard L, Sundberg B, Mellerowicz EJ (2008) Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiol 146:554–565PubMedPubMedCentralCrossRefGoogle Scholar
  293. Siegel D, Avisar D, Abramson M, Shani Z, Hirsch S (2013) Compositions and methods for enhancing plant photosynthetic activity. US Patent Application US 20130333073 A1Google Scholar
  294. Simkin AJ, Lopez-Calcagno PE, Davey PA, Headland LR, Lawson T, Timm S, Bauwe H, Raines CA (2017) Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis. Plant Biotechnol J 15:805–816PubMedPubMedCentralCrossRefGoogle Scholar
  295. Simkin AJ, McAusland L, Headland LR, Lawson T, Raines CA (2015) Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco. J Exp Bot 66:4075–4090PubMedPubMedCentralCrossRefGoogle Scholar
  296. Smith RA, Gonzales-Vigil E, Karlen SD, Park J-Y, Lu F, Wilkerson CG, Samuels L, Ralph J, Mansfield SD (2015) Engineering monolignol p-coumarate conjugates into poplar and Arabidopsis lignins. Plant Physiol 169:2992–3001PubMedPubMedCentralGoogle Scholar
  297. Sollars ESA, Harper AL, Kelly LJ, Sambles CM, Ramirez-Gonzalez RH, Swarbreck D, Kaithakottil G, Cooper ED, Uauy C, Havlickova L, Worswick G, Studholme DJ, Zohren J, Salmon DL, Clavijo BJ, Li Y, He Z, Fellgett A, McKinney LV, Nielsen LR, Douglas GC, Kjær ED, Downie JA, Boshier D, Lee S, Clark J, Grant M, Bancroft I, Caccamo M, Buggs RJA (2017) Genome sequence and genetic diversity of European ash trees. Nature 541:212–216PubMedCrossRefGoogle Scholar
  298. Song D, Gui J, Liu C, Sun J, Li L (2016) Suppression of PtrDUF579-3 expression causes structural changes of the glucuronoxylan in Populus. Front Plant Sci 7:493PubMedPubMedCentralGoogle Scholar
  299. Song G-Q, Sink KC, Walworth AE, Cook MA, Allison RF, Lang GA (2013) Engineering cherry rootstocks with resistance to Prunus necrotic ring spot virus through RNAi-mediated silencing. Plant Biotechnol J 11:702–708PubMedCrossRefGoogle Scholar
  300. Spokevicius AV, Van Beveren KS, Bossinger G (2006) Agrobacterium-mediated transformation of dormant lateral buds in poplar trees reveals developmental patterns in secondary stem tissues. Funct Plant Biol 33:133–139CrossRefGoogle Scholar
  301. Srinivasan C, Dardick C, Callahan A, Scorza R (2012) Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS One 7:e40715PubMedPubMedCentralCrossRefGoogle Scholar
  302. Srinivasan C, Liu Z, Heidmann I, Supena EDJ, Fukuoka H, Joosen R, Lambalk J, Angenent G, Scorza R, Custers JBM, Boutilier K (2007) Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225:341–351PubMedCrossRefGoogle Scholar
  303. Steiner KC, Westbrook JW, Hebard FV, Georgi LL, Powell WA, Fitzsimmons SF (2016) Rescue of American chestnut with extraspecific genes following its destruction by a naturalized pathogen. New For 48:317–336CrossRefGoogle Scholar
  304. Stevens ME, Pijut PM (2014) Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda. Plant Cell Rep 33:861–870PubMedCrossRefGoogle Scholar
  305. Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD (2009) The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiol 150:621–635PubMedPubMedCentralCrossRefGoogle Scholar
  306. Stipes RJ, Hunter PP, Elkins JR, Roane MK (1978) Endothia cankers of oaks. In: Santamour Jr FS (ed) Proc 1st Conf Metropolitan Tree Improvement Alliance (METRIA), METRIA, USDA Forest Service, The National Urban and Community Forestry Council, and North Carolina State University,, pp 97–120
  307. Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J, Hsieh T-F, Fischer RL, Goldberg RB, Harada JJ (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci U S A 105:3151–3156PubMedPubMedCentralCrossRefGoogle Scholar
  308. Stover E, Stange RR Jr, McCollum TG, Jaynes J, Mirkov E (2013) Screening antimicrobial peptides in vitro for use in developing transgenic citrus resistant to Huanglongbing and citrus canker. J Am Soc Hortic Sci 138:142–148Google Scholar
  309. Strauss SH, Costanza A, Séguin A (2015) Genetically engineered trees: paralysis from good intentions. Science 349:794–795PubMedCrossRefGoogle Scholar
  310. Strauss SH, Jones KN, Lu H, Petit JD, Klocko AL, Betts MG, Brosi BJ, Fletcher RJ Jr, Needham MD (2017) Reproductive modification in forest plantations: impacts on biodiversity and society. New Phytol 213:1000–1021PubMedCrossRefGoogle Scholar
  311. Strauss SH, Rottmann WH, Brunner AM, Sheppard LA (1995) Genetic engineering of reproductive sterility in forest trees. Mol Breed 1:5–26CrossRefGoogle Scholar
  312. Strauss SH, Tan H, Boerjan W, Sedjo R (2009) Strangled at birth? Forest biotech and the convention on biological diversity. Nat Biotechnol 27:519–527PubMedCrossRefGoogle Scholar
  313. Sturm A, Tang G-Q (1999) The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 4:401–407PubMedCrossRefGoogle Scholar
  314. Suárez MF, Avila C, Gallardo F, Canton FR, García-Gutiérrez A, Gonzalo Claros M, Cánovas FM (2002) Molecular and enzymatic analysis of ammonium assimilation in woody plants. J Exp Bot 53:891–904PubMedCrossRefGoogle Scholar
  315. Sugden A, Fahrenkamp-Uppenbrink J, Malakoff D, Vignieri S (2015) Forest health in a changing world. Science 349:800–801PubMedCrossRefGoogle Scholar
  316. Sun J, Peng X, Fan W, Tang M, Liu J, Shen S (2014) Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera. Gene 535:140–149PubMedCrossRefGoogle Scholar
  317. Sun ZX, Yang HH, Cui DC, Zhao CZ, Zhao SP (2002) Analysis of salt resistance on the poplar transferred with salt tolerance gene. Chin J Biotechnol 18:481–485Google Scholar
  318. Sutela S, Hahl T, Tilmonen H, Aronen T, Ylioja T, Laakso T, Saranpää P, Chiang V, Julkunen-Tiitto R, Häggman H (2014) Phenolic compounds and expression in 4CL genes in silver birch clones and Pt4CL1a lines. PLoS One 9:e114434PubMedPubMedCentralCrossRefGoogle Scholar
  319. Suzuki JY, Tripathi S, Gonsalves D (2007) Virus-resistant transgenic papaya: commercial development and regulatory and environmental issues. In: Punja ZK, De Boer SH, Sanfaçon H (eds) Biotechnology and plant disease management. CAB Int, Wallingford, pp 436–461CrossRefGoogle Scholar
  320. Suzuki S, Sakakibara N, Li L, Umezawa T, Chiang VL (2010) Profiling of phenylpropanoid monomers in developing xylem tissue of transgenic aspen (Populus tremuloides). J Wood Sci 56:71–76CrossRefGoogle Scholar
  321. Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan AM (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein. Nat Commun 7:13274PubMedPubMedCentralCrossRefGoogle Scholar
  322. Sykes RW, Gjersing EL, Foutz K, Rottmann WH, Kuhn SA, Foster CE, Ziebell A, Turner GB, Decker SR, Hinchee MAW, Davis MF (2015) Down-regulation of p-coumaroyl quinate/shikimate 3′-hydroxylase (C3′ H) and cinnamate 4-hydroxylase (C4H) genes in the lignin biosynthetic pathway of Eucalyptus urophylla × E. grandis leads to improved sugar release. Biotechnol Biofuels 8:128PubMedPubMedCentralCrossRefGoogle Scholar
  323. Takabe T, Uchida A, Shinagawa F, Terada Y, Kajita H, Tanaka Y, Takabe T, Hayashi T, Kawai T, Takabe T (2008) Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances growth rate as well as abiotic stress tolerance of poplar plants. Plant Growth Regul 56:265–273CrossRefGoogle Scholar
  324. Takahashi N, Koshijima T (1988) Ester linkages between lignin and glucuronoxylan in a lignin-carbohydrate complex from beech (Fagus crenata) wood. Wood Sci Technol 22:231–241CrossRefGoogle Scholar
  325. Tang W, Charles TM, Newton RJ (2005) Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus virginiana Mill.) confers multiple stress tolerance and enhances organ growth. Plant Mol Biol 59:603–617PubMedCrossRefGoogle Scholar
  326. Taniguchi T, Ohmiya Y, Kurita M, Tsubomura M, Kondo T, Park YW, Baba K, Hayashi T (2008) Biosafety assessment of transgenic poplars overexpressing xyloglucanase (AaXEG2) prior to field trials. J Wood Sci 54:408–413CrossRefGoogle Scholar
  327. Tao R, Dandekar AM, Uratsu SL, Vail PV, Tebbets JS (1997) Engineering genetic resistance against insects in Japanese persimmon using the cryIA(c) gene of Bacillus thuringiensis. J Am Soc Hortic Sci 122:764–771Google Scholar
  328. Taylor JG, Owen TP Jr, Koonce LT, Haigler CH (1992) Dispersed lignin in tracheary elements treated with cellulose synthesis inhibitors provides evidence that molecules of the secondary cell wall mediate wall patterning. Plant J 2:959–970CrossRefGoogle Scholar
  329. Teper-Bamnolker P, Samach A (2005) The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell 17:2661–2675PubMedPubMedCentralCrossRefGoogle Scholar
  330. The International Peach Genome Initiative (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity domestication and genome evolution. Nat Genet 45:487–494CrossRefGoogle Scholar
  331. Tian XM, Xie J, Zhao YL, Lu H, Liu SC, Qu L, Li JM, Gai Y, Jiang XN (2013) Sense-, antisense- and RNAi-4CL1 regulate soluble phenolic acids, cell wall components and growth in transgenic Populus tomentosa Carr. Plant Physiol Biochem 65:111–119PubMedCrossRefGoogle Scholar
  332. Tian YC, Zheng JB, YU HM, Liang HY, Li CQ, Wang JM (2000) Studies of transgenic hybrid poplar 741 carrying two insect-resistant genes. Acta Bot Sin 42:263–268Google Scholar
  333. Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70CrossRefGoogle Scholar
  334. Tokumoto Y, Kajiura H, Takeno S, Harada Y, Suzuki N, Hosaka T, Gyokusen K, Nakazawa Y (2016) Induction of tetraploid hardy rubber tree, Eucommia ulmoides, and phenotypic differences from diploid. Plant Biotechnol 33:51–57CrossRefGoogle Scholar
  335. Turgeon R, Medville R (1998) The absence of phloem loading in willow leaves. Proc Natl Acad Sci U S A 95:12055–12060PubMedPubMedCentralCrossRefGoogle Scholar
  336. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, de Pamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé J-C, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C-J, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  337. Tuskan GA, Kalluri UC (2016) Gene impacting biomass formation and recalcitrance and methods of use. US Patent Application US20160326602 A1Google Scholar
  338. United States Department of Agriculture Animal and Plant Health Inspection Service (2013) Freeze tolerant Eucalyptus environmental impact statement scoping meetings. Accessed 13 Dec 2017
  339. United States Department of Agriculture Animal and Plant Health Inspection Service (2017) Petitions for determination of nonregulated status. Accessed 13 Dec 2017
  340. USDA Forest Service (2011) Western bark beetle strategy, Human safety, recovery and resiliency. United States Department Agriculture Forest Service. Accessed 8 Dec 2017
  341. Van Beveren KS, Spokevicius AV, Tibbits J, Wang Q, Bossinger G (2006) Transformation of cambial tissue in vivo provides an efficient means for induced somatic sector analysis and gene testing in stems of woody plant species. Funct Plant Biol 33:629–638CrossRefGoogle Scholar
  342. Van Doorsselaere J, Baucher M, Chognot E, Chabbert B, Tollier M-T, Petit-Conil M, Leplé J-C, Pilate G, Cornu D, Monties B, Van Montagu M, Inzé D, Boerjan W, Jouanin L (1995) A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulic acid O-methyltransferase activity. Plant J 8:855–864CrossRefGoogle Scholar
  343. Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196:978–1000PubMedCrossRefGoogle Scholar
  344. Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285PubMedCrossRefGoogle Scholar
  345. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839PubMedCrossRefGoogle Scholar
  346. Velázquez K, Agüero J, Vives MC, Aleza P, Pina JA, Moreno P, Navarro L, Guerri J (2016) Precocious flowering of juvenile citrus induced by a viral vector based on Citrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotechnol J 14:1976–1985PubMedPubMedCentralCrossRefGoogle Scholar
  347. Vendrame W, Wetzstein H (2005) Carya illinoinensis Pecan. In: Litz RE (ed) Biotechnology of fruit and nut crops. CAB International, Wallingford, pp 298–306Google Scholar
  348. Vidal N, Mallón R, Valladares S, Meijomín AM, Vieitez AM (2010) Regeneration of transgenic plants by Agrobacterium-mediated transformation of somatic embryos of juvenile and mature Quercus robur. Plant Cell Rep 29:1411–1422PubMedCrossRefGoogle Scholar
  349. Vihervuori L, Lyytikäinen-Saarenmaa P, Lu J, Pasonen H-L (2013) Effects on lepidopteran herbivores of feeding on leaves of transgenic birch (Betula pendula) expressing the sugar beet chitinase IV gene. Eur J Entomol 110:253–262CrossRefGoogle Scholar
  350. Vihervuori L, Pasonen H-L, Lyytikäinen-Saarenmaa P (2008) Density and composition of an insect population in a field trial of chitinase transgenic and wild-type silver birch (Betula pendula) clones. Environ Entomol 37:1582–1591PubMedCrossRefGoogle Scholar
  351. Vining KJ, Romanel E, Jones RC, Klocko A, Alves-Ferreira M, Hefer CA, Amarasinghe V, Dharmawardhana P, Naithani S, Ranik M, Wesley-Smith J, Solomon L, Jaiswal P, Myburg AA, Strauss SH (2015) The floral transcriptome of Eucalyptus grandis. New Phytol 206:1406–1422PubMedCrossRefGoogle Scholar
  352. Viswanath V, Albrectsen BR, Strauss SH (2012) Global regulatory burden for field testing of genetically modified trees. Tree Genet Genomes 8:221–226CrossRefGoogle Scholar
  353. Voelker SL, Lachenbruch B, Meinzer FC, Kitin P, Strauss SH (2011b) Transgenic poplars with reduced lignin show impaired xylem conductivity, growth efficiency and survival. Plant Cell Environ 34:655–668PubMedCrossRefGoogle Scholar
  354. Voelker SL, Lachenbruch B, Meinzer FC, Strauss SH (2011a) Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents. New Phytol 189:1096–1109PubMedCrossRefGoogle Scholar
  355. Voosen P (2014) Can genetic engineering save the Florida orange? In: Natl Geogr news Accessed 21 Feb 2017
  356. Wadenbäck J, von Arnold S, Egertsdotter U, Walter MH, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T, Clapham D (2008) Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Res 17:379–392PubMedCrossRefGoogle Scholar
  357. Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D, Torr K, Koch G, Schmitt U, Ralph J (2009) Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol 149:370–383PubMedPubMedCentralCrossRefGoogle Scholar
  358. Wagner A, Ralph J, Akiyama T, Flint H, Phillips L, Torr K, Nanayakkara B, Te Kiri L (2007) Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase in Pinus radiata. Proc Natl Acad Sci U S A 104:11856–11861PubMedPubMedCentralCrossRefGoogle Scholar
  359. Wagner A, Tobimatsu Y, Goeminne G, Philips L, Flint H, Steward D, Torr K, Donaldson L, Boerjan W, Ralph J (2013) Suppression of CCR impacts metabolite profile and cell wall composition in Pinus radiata tracheary elements. Plant Mol Biol 81:105–117PubMedCrossRefGoogle Scholar
  360. Wagner A, Tobimatsu Y, Philips L, Flint H, Geddes B, Lu F, Ralph J (2015) Syringyl lignin production in conifers: proof of concept in a pine tracheary element system. Proc Natl Acad Sci U S A 112:6218–6223PubMedPubMedCentralCrossRefGoogle Scholar
  361. Wagner A, Tobimatsu Y, Philips L, Flint H, Torr K, Donaldson L, Pears L, Ralph J (2011) CCoAOMT suppression modifies lignin composition in Pinus radiata. Plant J 67:119–129PubMedCrossRefGoogle Scholar
  362. Walawage SL, Britton MT, Leslie CA, Uratsu SL, Li YY, Dandekar AM (2013) Stacking resistance to crown gall and nematodes in walnut rootstocks. BMC Genomics 14:668PubMedPubMedCentralCrossRefGoogle Scholar
  363. Wallsgrove RM, Turner JC, Hall NP, Kendall AC, Bright SWJ (1987) Barley mutants lacking chloroplast glutamine synthetase—biochemical and genetic analysis. Plant Physiol 83:155–158PubMedPubMedCentralCrossRefGoogle Scholar
  364. Waltz E (2016a) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293PubMedCrossRefGoogle Scholar
  365. Waltz E (2016b) CRISPR-edited crops free to enter market, skip regulation. Nat Biotechnol 34:582PubMedCrossRefGoogle Scholar
  366. Wang J-W, Park MY, Wang L-J, Koo Y, Chen X-Y, Weigel D, Poethig RS (2011) miRNA control of vegetative phase change in trees. PLoS Genet 7:e1002012PubMedPubMedCentralCrossRefGoogle Scholar
  367. Wang Y, Pijut PM (2014a) Improvement of Agrobacterium-mediated transformation and rooting of black cherry. In Vitro Cell Dev Biol Plant 50:307–316CrossRefGoogle Scholar
  368. Wang Y, Pijut PM (2014b) Agrobacterium-mediated transformation of black cherry for flowering control and insect resistance. Plant Cell Tissue Organ Cult 119:107–116CrossRefGoogle Scholar
  369. Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500PubMedCrossRefGoogle Scholar
  370. Weigl K, Wenzel S, Flachowsky H, Peil A, Hanke M-V (2015) Integration of BpMADS4 on various linkage groups improves the utilization of the rapid cycle breeding system in apple. Plant Biotechnol J 13:246–258PubMedCrossRefGoogle Scholar
  371. Welch AJ, Stipanovic AJ, Maynard CA, Powell WA (2007) The effects of oxalic acid on transgenic Castanea dentata callus tissue expressing oxalate oxidase. Plant Sci 172:488–496CrossRefGoogle Scholar
  372. Weng J-K, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering anddegradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166–172PubMedCrossRefGoogle Scholar
  373. Whitehill JGA, Henderson H, Schwartz M, Skyba O, Yuen MMS, King J, Samuels AL, Mansfield SD, Bohlmann J (2016) Histology and cell wall biochemistry of stone cells in the physical defence of conifers against insects. Plant Cell Environ 39:1646–1661PubMedCrossRefGoogle Scholar
  374. Wilcox PL, Amerson HV, Kuhlman EG, Liu B-H, O’Malley DM, Sederoff RR (1996) Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genomic mapping. Proc Natl Acad Sci U S A 93:3859–3864PubMedPubMedCentralCrossRefGoogle Scholar
  375. Wilkerson CG, Mansfield SD, Lu F, Withers S, Park J-Y, Karlen SD, Gonzales-Vigil E, Padmakshan D, Unda F, Rencoret J, Ralph J (2014) Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344:90–93PubMedCrossRefGoogle Scholar
  376. Willats WGT, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27PubMedCrossRefGoogle Scholar
  377. Withers S, Lu F, Kim H, Zhu Y, Ralph J, Wilkerson CG (2012) Identification of grass-specific enzyme that acylates monolignols with p-coumarate. J Biol Chem 287:8347–8355PubMedPubMedCentralCrossRefGoogle Scholar
  378. Xia E-H, Zhang H-B, Sheng J, Li K, Zhang Q-J, Kim C, Zhang Y, Liu Y, Zhu T, Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang J-J, Mao S-Y, Jiao J-J, Zhang D, Zhao Y, Zhao Y-J, Zhang L-P, Liu Y-L, Liu B-Y, Yu Y, Shao S-F, Ni D-J, Eichler EE, Gao L-Z (2017) The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol Plant 10:866–877PubMedCrossRefGoogle Scholar
  379. Xiang D-j, Hu X-y, Zhang Y, Yin K-d (2008) Over-expression of ICE1 gene in transgenic rice improves cold tolerance. Rice Sci 15:173–178CrossRefGoogle Scholar
  380. Xiang Z, Sen SK, Roy A, Min D, Savithri D, Jameel H, Chiang V, Chang H-m (2015) Wood characteristics and enzymatic saccharification efficiency of field-grown transgenic black cottonwood with altered lignin content and structure. Cellulose 22:683–693CrossRefGoogle Scholar
  381. Xiu Y, Iqbal A, Zhu C, Wu G, Chang Y, Li N, Cao Y, Zhang W, Zeng H, Chen S, Wang H (2016) Improvement and transcriptome analysis of root architecture by overexpression of Fraxinus pennsylvanica DREB2A transcription factor in Robinia pseudoacacia L. ‘Idaho’. Plant Biotechnol J 14:1456–1469PubMedPubMedCentralCrossRefGoogle Scholar
  382. Xu Q, Chen L-L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W-B, Hao B-H, Lyon MP, Chen J, Gao S, Xing F, Lan H, Chang J-W, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas KM, Zeng W, Guo F, Cao H, Yang X, Xu X-W, Cheng Y-J, Xu J, Liu J-H, Luo OJ, Tang Z, Guo W-W, Kuang H, Zhang H-Y, Roose ML, Nagarajan N, Deng X-X, Ruan Y (2013) The draft genome of seet orange (Citrus sinensis). Nat Genet 45:59–66PubMedCrossRefGoogle Scholar
  383. Yamagishi N, Kishigami R, Yoshikawa N (2014) Reduced generation time of apple seedlings to within a year by means of a plant virus vector: a new plant-breeding technique with no transmission of genetic modification to the next generation. Plant Biotechnol J 12:60–68PubMedCrossRefGoogle Scholar
  384. Yamagishi N, Li C, Yoshikawa N (2016) Promotion of flowering by apple latent spherical virus vector and virus elimination at high temperature allow accelerated breeding of apple and pear. Front Plant Sci 7:171PubMedPubMedCentralCrossRefGoogle Scholar
  385. Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236:331–340PubMedCrossRefGoogle Scholar
  386. Yang A, Dai X, Zhang W-H (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556PubMedPubMedCentralCrossRefGoogle Scholar
  387. Yang F, Mitra P, Zhang L, Prak L, Verhertbruggen Y, Kim J-S, Sun L, Zheng K, Tang K, Auer M, Scheller HV, Loqué D (2013) Engineering secondary cell wall deposition in plants. Plant Biotechnol J 11:325–335PubMedCrossRefGoogle Scholar
  388. Yang J, Yao P, Li Y, Mo J, Wang J, Kang X (2016) Induction of 2n pollen with colchicine during microsporogenesis in Eucalyptus. Euphytica 210:69–78CrossRefGoogle Scholar
  389. Yang ZN, Ingelbrecht IL, Louzada E, Skaria M, Mirkov TE (2000) Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio red (Citrus paradisi Macf.). Plant Cell Rep 19:1203–1211CrossRefGoogle Scholar
  390. Yu L, Chen H, Sun J, Li L (2014) PtrKOR1 is required for secondary cell wall cellulose biosynthesis in Populus. Tree Physiol 34:1289–1300PubMedCrossRefGoogle Scholar
  391. Yu L, Sun J, Li L (2013) PtrCel9A6, an endo-1, 4-β-glucanase, is required for cell wall formation during xylem differentiation in Populus. Mol Plant 6:1904–1917PubMedCrossRefGoogle Scholar
  392. Zelasco S, Reggi S, Calligari P, Balestrazzi A, Bongiorni C, Quattrini E, Delia G, Bisoffi S, Fogher C, Confalonieri M (2006) Expression of the Vitreoscilla hemoglobin (VHb)-encoding gene in transgenic white poplar: plant growth and biomass production, biochemical characterization and cell survival under submergence, oxidative and nitrosative stress conditions. Mol Breed 17:201–216CrossRefGoogle Scholar
  393. Zelasco S, Ressegotti V, Confaloniere M, Carbonera D, Calligari P, Bonadei M, Bisoffi S, Yamada K, Balestrazzi A (2007) Evaluation of MAT-vector system in white poplar (Populus alba L.) and production of ipt marker-free transgenic plants by ‘single-step transformation. Plant Cell Tissue Organ Cult 91:61–72CrossRefGoogle Scholar
  394. Zeng F, Qian J, Luo W, Zhan Y, Xin Y, Yang C (2010) Stability of transgenes in long-term micropropagation of plants of transgenic birch (Betula platyphylla). Biotechnol Lett 32:151–156PubMedCrossRefGoogle Scholar
  395. Zeng F, Xin Y, Li B, Zhan Y, Yang C (2011) The stability of transgene expression and effect of DNA methylation on post transcriptional gene silencing (PTGS) in birch. Afr J Biotechnol 10:8188–8193CrossRefGoogle Scholar
  396. Zeng F, Zhan Y, Nan N, Xin Y, Qi F, Yang C (2009) Expression of bgt gene in transgenic birch (Betula platyphylla Suk.). Afr J Biotechnol 8:3392–3398Google Scholar
  397. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771PubMedPubMedCentralCrossRefGoogle Scholar
  398. Zhai M, Sun Y, Jia C, Peng S, Liu Z, Yang G (2016) Over-expression of JrsHSP17.3 gene from Juglans regia confer the tolerance to abnormal temperature and NaCl stresses. J Plant Biol 59:549–558CrossRefGoogle Scholar
  399. Zhang B, Oakes AD, Newhouse AE, Baier KM, Maynard CA, Powell WA (2013) A threshold level of oxalate oxidase transgene expression reduces Cryphonectria parasitica-induced necrosis in a transgenic American chestnut (Castanea dentata) leaf bioassay. Transgenic Res 22:973–982PubMedPubMedCentralCrossRefGoogle Scholar
  400. Zhang C, Norris-Caneda KH, Rottmann WH, Gulledge JE, Chang S, Kwan BY-H, Thomas AM, Mandel LC, Kothera RT, Victor AD, Pearson L, Hinchee MAW (2012a) Control of pollen-mediated gene flow in transgenic trees. Plant Physiol 159:1319–1334PubMedPubMedCentralCrossRefGoogle Scholar
  401. Zhang H, Harry DE, Ma C, Yuceer C, Hsu C-Y, Vikram V, Shevchenko O, Etherington E, Strauss SH (2010) Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. J Exp Bot 61:2549–2560PubMedCrossRefGoogle Scholar
  402. Zhang R-X, Qin L-J, Zhao D-G (2017) Overexpression of the OsIMP gene increases the accumulation of inositol and confers enhanced cold tolerance in tobacco through modulation of the antioxidant enzymes' activities. Genes 8:179PubMedCentralCrossRefGoogle Scholar
  403. Zhang Y, Clemens A, Maximova SN, Guiltinan MJ (2014) The Theobroma cacao B3 domain transcription factor TcLEC2 plays a duel role in control of embryo development and maturation. BMC Plant Biol 14:106PubMedPubMedCentralCrossRefGoogle Scholar
  404. Zhang Y, Wang Y, Wang C (2012b) Gene overexpression and gene silencing in birch using an Agrobacterium-mediated transient expression system. Mol Biol Rep 39:5537–5541PubMedCrossRefGoogle Scholar
  405. Zheng L, Liu G, Meng X, Li Y, Wang Y (2012) A versatile Agrobacterium-mediated transient gene expression system for herbaceous plants and trees. Biochem Genet 50:761–769PubMedCrossRefGoogle Scholar
  406. Zhou X, Jacobs TB, Xue L-J, Harding SA, Tsai C-J (2015) Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol 208:298–301PubMedCrossRefGoogle Scholar
  407. Zhu S-P, Wang J, Ye J-l, Zhu A-D, Guo W-w, Deng X-x (2014) Isolation and characterization of LEAFY COTYLEDON 1-LIKE gene related to embryogenic competence in Citrus sinensis. Plant Cell Tissue Organ Cult 119:1–13CrossRefGoogle Scholar
  408. Zhuo R, Qiao G, Sun Z (2007) Transgene expression in Chinese sweetgum driven by the salt induced expressed promoter. Plant Cell Tissue Organ Cult 88:101–107CrossRefGoogle Scholar
  409. Zuo J, Niu Q-W, Frugis G, Chua N-H (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2018

Authors and Affiliations

  • Shujun Chang
    • 1
  • Elizabeth L. Mahon
    • 2
  • Heather A. MacKay
    • 2
  • William H. Rottmann
    • 3
  • Steven H. Strauss
    • 4
  • Paula M. Pijut
    • 5
  • William A. Powell
    • 6
  • Vernon Coffey
    • 6
  • Haiwei Lu
    • 4
  • Shawn D. Mansfield
    • 2
  • Todd J. Jones
    • 1
    Email author
  1. 1.Crop Genome EngineeringDowDupontJohnstonUSA
  2. 2.Department of Wood ScienceUniversity of British ColumbiaVancouverCanada
  3. 3.SummervilleUSA
  4. 4.Department of Forestry Ecosystems and SocietyOregon State UniversityCorvallisUSA
  5. 5.USDA Forest Service, Northern Research StationHardwood Tree Improvement and Regeneration CenterWest LafayetteUSA
  6. 6.Department of Environmental and Forest BiologyState University of New York College of Environmental Science and ForestrySyracuseUSA

Personalised recommendations