In Vitro Cellular & Developmental Biology - Plant

, Volume 52, Issue 6, pp 547–562 | Cite as

Design of experiments (DOE)—history, concepts, and relevance to in vitro culture

  • Randall P. NiedzEmail author
  • Terence J. Evens


Design of experiments (DOE) is a large and well-developed field for understanding and improving the performance of complex systems. Because in vitro culture systems are complex and easily manipulated in controlled conditions, they are particularly well-suited for the application of DOE principles and techniques. Successful use of in vitro technologies in horticultural, plant breeding, or genetic applications typically involves improving some aspect of a system’s growth response—organogenesis, somatic embryogenesis, metabolite biosynthesis, or responses required for crop improvement such as ploidy manipulation, embryo rescue, creation and manipulation of chimeras, somaclonal variation, and mutant isolation. How and why DOE is the appropriate research approach for developing and understanding in vitro systems research is explained. The presentation is a narrative of the historical context and the geometric basis of DOE to explain the underlying concepts. Examples illustrate the use of DOE in in vitro plant culture research.


Experimental design Scientific method Plant tissue culture Mineral nutrition Ion-specific effects 

Supplementary material

11627_2016_9786_MOESM1_ESM.docx (43 kb)
ESM 1 (DOCX 42 kb)


  1. Aarts AA, Anderson JE, Anderson CJ, Attridge PR, Attwood A, Axt J, Babel M, Bahník Š, Baranski E, Barnett-Cowan M, Bartmess E, Beer J, Bell R, Bentley H, Beyan L, Binion G, Borsboom D, Bosch A, Bosco FA, Bowman SD, Brandt MJ, Braswell E, Brohmer H, Brown BT, Brown K, Brüning J, Calhoun-Sauls A, Callahan SP, Chagnon E, Chandler J, Chartier CR, Cheung F, Christopherson CD, Cillessen L, Clay R, Cleary H, Cloud MD, Conn M, Cohoon J, Columbus S, Cordes A, Costantini G, Alvarez LDC, Cremata E, Crusius J, DeCoster J, DeGaetano MA, Penna ND, Den Bezemer B, Deserno MK, Devitt O, Dewitte L, Dobolyi DG, Dodson GT, Donnellan MB, Donohue R, Dore RA, Dorrough A, Dreber A, Dugas M, Dunn EW, Easey K, Eboigbe S, Eggleston C, Embley J, Epskamp S, Errington TM, Estel V, Farach FJ, Feather J, Fedor A, Fernández-Castilla B, Fiedler S, Field JG, Fitneva SA, Flagan T, Forest AL, Forsell E, Foster JD, Frank MC, Frazier RS, Fuchs H, Gable P, Galak J, Galliani EM, Gampa A, Garcia S, Gazarian D, Gilbert E, Giner-Sorolla R, Glöckner A, Goellner L, Goh JX, Goldberg R, Goodbourn PT, Gordon-McKeon S, Gorges B, Gorges J, Goss J, Graham J, Grange JA, Gray J, Hartgerink C, Hartshorne J, Hasselman F, Hayes T, Heikensten E, Henninger F, Hodsoll J, Holubar T, Hoogendoorn G, Humphries DJ, Hung COY, Immelman N, Irsik VC, Jahn G, Jäkel F, Jekel M, Johannesson M, Johnson LG, Johnson DJ, Johnson KM, Johnston WJ, Jonas K, Joy-Gaba JA, Kappes HB, Kelso K, Kidwell MC, Kim SK, Kirkhart M, Kleinberg B, Knežević G, Kolorz FM, Kossakowski JJ, Krause RW, Krijnen J, Kuhlmann T, Kunkels YK, Kyc MM, Lai CK, Laique A, Lakens D, Lane KA, Lassetter B, Lazarević LB, Le Bel EP, Lee KJ, Lee M, Lemm K, Levitan CA, Lewis M, Lin L, Lin S, Lippold M, Loureiro D, Luteijn I, MacKinnon S, Mainard HN, Marigold DC, Martin DP, Martinez T, Masicampo EJ, Matacotta J, Mathur M, May M, Mechin N, Mehta P, Meixner J, Melinger A, Miller JK, Miller M, Moore K, Möschl M, Motyl M, Müller SM, Munafo M, Neijenhuijs KI, Nervi T, Nicolas G, Nilsonne G, Nosek BA, Nuijten MB, Olsson C, Osborne C, Ostkamp L, Pavel M, Penton-Voak IS, Perna O, Pernet C, Perugini M, Pipitone RN, Pitts M, Plessow F, Prenoveau JM, Rahal RM, Ratliff KA, Reinhard D, Renkewitz F, Ricker AA, Rigney A, Rivers AM, Roebke M, Rutchick AM, Ryan RS, Sahin O, Saide A, Sandstrom GM, Santos D, Saxe R, Schlegelmilch R, Schmidt K, Scholz S, Seibel L, Selterman DF, Shaki S, Simpson WB, Sinclair HC, Skorinko JLM, Slowik A, Snyder JS, Soderberg C, Sonnleitner C, Spencer N, Spies JR, Steegen S, Stieger S, Strohminger N, Sullivan GB, Talhelm T, Tapia M, Te Dorsthorst A, Thomae M, Thomas SL, Tio P, Traets F, Tsang S, Tuerlinckx F, Turchan P, Valášek M, Van't Veer AE, Van Aert R, Van Assen M, Van Bork R, Van De Ven M, Van Den Bergh D, Van Der Hulst M, Van Dooren R, Van Doorn J, Van Renswoude DR, Van Rijn H, Vanpaemel W, Echeverría AV, Vazquez M, Velez N, Vermue M, Verschoor M, Vianello M, Voracek M, Vuu G, Wagenmakers EJ, Weerdmeester J, Welsh A, Westgate EC, Wissink J, Wood M, Woods A, Wright E, Wu S, Zeelenberg M, Zuni K (2015) Estimating the reproducibility of psychological science. Science 349(6251). doi: 10.1126/science.aac4716
  2. Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Ann Rev Mar Sci 4:143–176CrossRefPubMedGoogle Scholar
  3. Andersson R, Eriksson H, Torstensson H (2006) Similarities and differences between TQM, six sigma and lean. The TQM Magazine 18:282–296CrossRefGoogle Scholar
  4. Bacon F (1650) Novum organum scientiarum. Adriani Wyngaerden, LondonGoogle Scholar
  5. Bailey NTJ (1967) The mathematical approach to biology and medicine. John Wiley & Sons, London, New York, Sydney xiii, pg. 23Google Scholar
  6. Barker TB (1986) Quality engineering by design: Taguchi's philosophy. Quality Progress 19:32–42Google Scholar
  7. Bayart D (2001) Walter Andrew Shewhart. In: Heyde CC, Seneta E (eds) Statisticians of the centuries. Springer-Verlag, New York, pp. 398–401CrossRefGoogle Scholar
  8. Begley CG, Ioannidis JP (2015) Reproducibility in science: improving the standard for basic and preclinical research. Circ Res 116:116–126CrossRefPubMedGoogle Scholar
  9. Box JF (1978) R.A. Fisher: the life of a scientist. Wiley, New YorkGoogle Scholar
  10. Box GEP, Meyer RD (1986) An analysis for unreplicated fractional factorials. Technometrics 28:11–18CrossRefGoogle Scholar
  11. Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society Series B (Methodological) 13:1–45Google Scholar
  12. Chernoff H (1999) Gustav Elfving's impact on experimental design. Stat Sci 14:201–205CrossRefGoogle Scholar
  13. Chu CC, Wang CS, Sun CS, Hsu V, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through experiments on the nitrogen source. Scient Sin 18:659– 668Google Scholar
  14. Collins FS, Tabak LA (2014) NIH plans to enhance reproducibility. Nature 505:612–613CrossRefPubMedPubMedCentralGoogle Scholar
  15. Davidson K, Gowen RJ, Tett P, Bresnan E, Harrison PJ, McKinney A, Milligan S, Mills DK, Silke J, Crooks AM (2012) Harmful algal blooms: how strong is the evidence that nutrient ratios and forms influence their occurrence? Estuar Coast Shelf Sci 115:399–413CrossRefGoogle Scholar
  16. DeLoach R (2000) Improved quality in aerospace testing through the modern design of experiments. 38th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, Reston, VirginiaGoogle Scholar
  17. DeLoach R (2002) The objective of aerospace ground testing: an alternative perspective. GTTC Newsletter 5:18–19Google Scholar
  18. DeLoach R (2010) Analysis of variance in the modern design of experiments. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, Orlando, FloridaGoogle Scholar
  19. Deming WE (2000) The new economics for industry, government, education, 2nd edn. MIT Press, Cambridge, MassachusettsGoogle Scholar
  20. Driver JA, Kuniyuki AM (1984) In vitro propagation of Paradox walnut rootstock. HortSci 19:507–509Google Scholar
  21. Evens TJ, Niedz RP (2008) Are Hofmeister series relevant to modern ion-specific effects research? Scholarly Research Exchange. doi: 10.3814/2008/761829 Google Scholar
  22. Evens TJ, Niedz RP (2011) Mapping the fundamental niches of two freshwater microalgae, Chlorella vulgaris (Trebouxiophyceae) and Peridinium cinctum (Dinophyceae), in 5-dimensional ion space. Int J Ecol 2011:1–12CrossRefGoogle Scholar
  23. Feynman RP, Leighton RB, Sands M (1963) The Feynman Lectures on Physics. Addison-Wesley Publishing Company, Reading, MAGoogle Scholar
  24. Fisher RA (1921) Studies in crop variation. I. An examination of the yield of dressed grain from Broadbalk. J Agric Sci 11:107–135CrossRefGoogle Scholar
  25. Fisher RA (1925) Statistical methods for research workers. Oliver and Boyd, EdinburghGoogle Scholar
  26. Fisher RA (1926) The arrangement of field experiments. J Minist Agric (GB) 33:503–513Google Scholar
  27. Fisher RA (1937) The design of experiments, 2nd edn. Oliver and Boyd, EdinburghGoogle Scholar
  28. Fisher RA (1947) Development of the theory of experimental design. Proceedings of the International Statistical Conferences (Washington) 3:434–439Google Scholar
  29. Fisher RA (1952) Statistical methods in genetics. Heredity 6:1–12CrossRefGoogle Scholar
  30. Freedman LP, Cockburn IM, Simcoe TS (2015) The economics of reproducibility in preclinical research. PLoS Biol 13:e1002165CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gaither CC, Cavazos-Gaither AE (2012) Gaither’s dictionary of scientific quotations, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  32. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158CrossRefPubMedGoogle Scholar
  33. George EF (1993) Plant propagation by tissue culture. Part 1: The technology, 2nd edn. Exegetics Limited, Edington, UKGoogle Scholar
  34. Glibert PM, Burkholder JM (2011) Harmful algal blooms and eutrophication: "strategies" for nutrient uptake and growth outside the Redfield comfort zone. Chin J Oceanol Limnol 29:724–738CrossRefGoogle Scholar
  35. Hallegraeff GM (2010) Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J Phycol 46:220–235CrossRefGoogle Scholar
  36. Heller R (1953) Researches on the mineral nutrition of plant tissues. Ann Sci Nat Bot Biol Vég, 11th Ser 14:1–223Google Scholar
  37. Johnston AE, Garner HV (1969) Broadbalk: historical introduction. Rothamsted Experimental Station Report for 1968 Part 2:12–25Google Scholar
  38. Knop W (1865) Quantitative Utersuchungen Über den Ernährungensprozeß der Pflanze. Landw Versuchssat 7:93–107Google Scholar
  39. Knudson L (1943) Nutrient solutions for orchid seed germination. Am Orchid Soc Bull 12:77–79Google Scholar
  40. Kuhfeld WF (2010) Experimental design: efficiency, coding, and choice designs. Available via
  41. Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10:113–390CrossRefGoogle Scholar
  42. Larsen K (2005) Stephen Hawking: a biography. Greenwood Press, Westport, Connecticut, p. 43Google Scholar
  43. Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Proc Int Plant Propagators Soc 30:421–427Google Scholar
  44. McGranahan GH, Driver JA, Tulecke W (1987) Tissue culture of Juglans. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry: case histories: gymnosperms, angiosperms and palms. Springer Netherlands, Dordrecht, pp. 261–271CrossRefGoogle Scholar
  45. Montgomery DC (2013) Design and analysis of experiments, 8th edn. Wiley, Hoboken, NJGoogle Scholar
  46. Morel G, Muller J F (1964) La culture in vitro du merstem apical de la pommede terre. Compt Rend Acad Sci 258:5255–5250Google Scholar
  47. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  48. Niedz RP, Evens TJ (2006) A solution to the problem of ion confounding in experimental biology. Nat Methods 3:417CrossRefPubMedGoogle Scholar
  49. Niedz RP, Evens TJ (2007) Regulating plant tissue growth by mineral nutrition. In Vitro Cell Dev Biol Plant 43:370–381CrossRefGoogle Scholar
  50. Niedz RP, Evens TJ (2011) Mixture screening and mixture-amount designs to determine plant growth regulator effects on shoot regeneration from grapefruit (Citrus paradisi macf.) epicotyls. In Vitro Cell Dev Biol Plant 47:682–694CrossRefGoogle Scholar
  51. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87CrossRefPubMedGoogle Scholar
  52. Nordström K (1999) The life and work of Gustav Elfving. Stat Sci 14:174–193CrossRefGoogle Scholar
  53. Piesk T (2014) 4-cube t0.svg. In: Wikimedia Commons. Cited 27 June 2016
  54. Quoirin M, Lepoivre P (1977) Improved media for in vitro culture of Prunus sp. Acta Hortic 78:437–442CrossRefGoogle Scholar
  55. Ross G (2012) Fisher and the millionaire: the statistician and the calculator. Significance 9:46–48CrossRefGoogle Scholar
  56. Ruen T (2011a) 9-cube t0.svg. In: Wikimedia Commons. Cited 27 June 2016
  57. Ruen T (2011b) 10-cube t0.svg. In: Wikimedia Commons. Cited 27 June 2016
  58. Salsburg D (2001) The lady tasting tea. W. H. Freeman and Co., New YorkGoogle Scholar
  59. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204CrossRefGoogle Scholar
  60. Schwarz A (2012) The becoming of the experimental mode. Scientiae Studia 10:65–83CrossRefGoogle Scholar
  61. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–131PubMedGoogle Scholar
  62. Smith DR, King KW, Williams MR (2015) What is causing the harmful algal blooms in Lake Erie? J Soil Water Conserv 70:27A–29ACrossRefGoogle Scholar
  63. Vacin EF, Went FW (1949) Some pH changes in nutrient solutions. Bot Gaz 110:605–613CrossRefGoogle Scholar
  64. White PR (1943) Nutrient deficiency studies and an improved inorganic nutrient for cultivation of excised tomato roots. Growth 7:53–65Google Scholar
  65. Zappa F (1979) Packard Goose (song). On: Joe's Garage. Zappa Records, Los AngelesGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2016

Authors and Affiliations

  1. 1.U.S. Department of Agriculture, Agricultural Research ServiceU.S. Horticultural Research LaboratoryFort PierceUSA

Personalised recommendations