Advertisement

Hyoscyamine production in hairy roots of three Datura species exposed to high-salt medium

  • Boualem Harfi
  • Majda Khelifi-Slaoui
  • Mohamed Bekhouche
  • Roukia Benyammi
  • Kathleen Hefferon
  • Abdullah MakhzoumEmail author
  • Lakhdar KhelifiEmail author
Plant Tissue Culture

Abstract

Several species of the genus Datura have been cultivated for their hyoscyamine content. Hyoscyamine production in field-cultivated plants can often be limited by environmental conditions. The culture of hairy roots obtained by inoculation of Datura explants with the A4 strain of Agrobacterium rhizogenes offers promising prospects for the in vitro production of hyoscyamine. The objectives of this study were to select high-quality hairy root lines and then optimize hyoscyamine production by applying a salt stress. Potassium chloride (KCl) and calcium chloride (CaCl2) were added at various elicitation times, and both had significant effects on hyoscyamine biosynthesis. The optimal concentration of KCl was 2 g L−1, combined with a contact time of 10 h for the selected Datura tatula line (LDT) and 24 h for the selected Datura stramonium (LDS) and Datura innoxia (LDI) lines. For CaCl2, the optimum concentration was 2 g L−1 for LDS and LDT, with respective elicitation times of 10 and 24 h. For LDI, the best result was obtained with a CaCl2 concentration of 1 g L−1 and an elicitation time of 24 h. The highest hyoscyamine levels obtained for LDS, LDT, and LDI were, respectively, 2.32-, 1.99-, and 1.85-fold the control levels with KCl elicitation and 2.08-, 2.07-, and 1.85-fold the control levels with CaCl2 elicitation. The line resulting from D. tatula elicited with 2 g L−1 CaCl2 for 24 h produced the most hyoscyamine content (16.978 mg g−1 DW), followed by LDI and then LDS.

Keywords

Abiotic stress Datura GC Hairy roots Hyoscyamine 

References

  1. Ajungla L, Patil PP, Barmukh RB, Nikam TD (2009) Influence of biotic and abiotic elicitors on accumulation of hyoscyamine and scopolamine in root cultures of Datura metel L. Indian J Biotechnol 8:317–322Google Scholar
  2. Alpizar E, Dechamp E, Lapeyre-Montes F, Guilhaumon C, Bertrand B, Jourdan C, Lashermes P, Etienne H (2008) Agrobacterium rhizogenes-transformed roots of coffee (Coffea arabica): conditions for long-term proliferation, and morphological and molecular characterization. Ann Bot 101:929–940PubMedCentralCrossRefPubMedGoogle Scholar
  3. Altabella T, Palazôn J, Ribô M, Angel E, Pifiol MT (1994) Comparative study of tropane alkaloid production in transformed roots of Datura stramonium and Scopolia carniolica. Plant Physiol 13:113–123Google Scholar
  4. Amdoun R, Khelifi L, Khelifi-Slaoui M, Amroune S, Asch M, Assaf-Ducrocq C, Gontier E (2010) Optimization of the culture medium composition to improve the production of hyoscyamine in elicited Datura stramonium L. hairy roots using the response surface methodology (RSM). Int J Mol Sci 11:4726–4740CrossRefGoogle Scholar
  5. Amdoun R, Khelifi L, Khelifi-Slaoui M, Amroune S, Benyoussef EH, Thi DV, Assaf-Ducrocq C, Gontier E (2009) Influence of minerals and elicitation on Datura stramonium L. tropane alkaloid production: modelization of the in vitro biochemical response. Plant Sci 177:81–87CrossRefGoogle Scholar
  6. Bianchini F, Corbitta F (1975) Atlas des plantes médicinales. Fernand Nathan, ParisGoogle Scholar
  7. Brache J, Cosson L, Ducourtioux D, Scheidecker D (1981) Effet du NaCl sur les taux d’esters tropaniques du Datura innoxia Mill. cultivé en conditions contrôlées. Physiologie Végétale 19:77–85Google Scholar
  8. Chénieux JC (1990) Apport des cultures in vitro dans la régulation du métabolisme secondaire végétal. Cinquantenaire des cultures in vitro, les colloques de l’INRA n°51, Clair Doré, Versailles, France, pp 111–123Google Scholar
  9. Dechaux C, Boitel-Conti M (2005) A strategy for overaccumulation of scopolamine in Datura innoxia hairy root cultures. Acta Biol Cracov Bot 47:101–107Google Scholar
  10. DiCosmo F, Misawa M (1995) Plant cell and tissue culture: alternatives for metabolite production. Biotechnol Adv 13:425–453CrossRefPubMedGoogle Scholar
  11. Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66CrossRefPubMedGoogle Scholar
  12. Fester K., 2010. Plant alkaloids. eLS Book, Wiley Ltd, Chichester. http://www.els.net [doi:  10.1002/9780470015902.a0001914.pub2]
  13. Flores HE, Vivanco JM, Loyola-Vargas VM (1999) ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226CrossRefPubMedGoogle Scholar
  14. Gamborg OL, Murashige T, Thorpe TA, Vasil IK (1976) Plant tissue culture media. In Vitro 12:473–478CrossRefPubMedGoogle Scholar
  15. Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185CrossRefPubMedGoogle Scholar
  16. Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22CrossRefPubMedGoogle Scholar
  17. Gontier E, Sangwan BS, Barbotin JN (1994) Effects of calcium, alginate, and calcium-alginate immobilization on growth and tropane alkaloid levels of a stable suspension cell line of Datura innoxia Mill. Plant Cell Rep 13:533–536CrossRefPubMedGoogle Scholar
  18. Grynkiewicz G, Gadzikowska M (2008) Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs. Pharmacol Rep 60:439–463PubMedGoogle Scholar
  19. Guignard J (1979) Abrégé de biochimie végétale 2ème édition. Maison, Paris, pp 217–229Google Scholar
  20. Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346CrossRefPubMedGoogle Scholar
  21. Harfi B, Khelifi-Slaoui M, Zaoui D, Benyammi R, Belabbassi O, Khelifi L (2011) Effect of culture medium on hyoscyamine production from four Datura sp hairy roots. Adv Environ Biol 5:1023–1030Google Scholar
  22. Houmani Z, Cosson L (2000) Quelques espèces algériennes à alcaloïdes tropaniques. In: Erga multimedia Links (ed) Ethnopharmacology. Genova, Italy, pp 205–214Google Scholar
  23. Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:121–127CrossRefGoogle Scholar
  24. Kamada H, Okamura N, Satake M, Harada H, Shimomura K (1986) Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep 5:239–242CrossRefPubMedGoogle Scholar
  25. Kartal M, Kurucu S, Altun L, Ceyhan T, Sayar E, Cevheroğlu S, Yetkin Y (2003) Quantitative analysis of 1-hyoscyamine in Hyoscyamus reticulatus L. by GC-MS. Turk J Chem 27:565–569Google Scholar
  26. Karwasara VS, Jain R, Tomar P, Dixit VK (2010) Elicitation as yield enhancement strategy for glycyrrhizin production by cell cultures of Abrus precatorius Linn. In Vitro Cell Dev Biol Plant 46:354–362CrossRefGoogle Scholar
  27. Khelifi L, Zarouri B, Amdoun R, Harfi B, Morsli A, Khelifi-Slaoui M (2011) Effects of elicitation and permeabilization on hyoscyamine content in Datura stramonium hairy roots. Adv Environ Biol 5:329–334Google Scholar
  28. Kutchan TM (1993) 12-oxo-phytodienoic acid induces accumulation of berberine bridge enzyme transcript in a manner analogous to methyl jasmonate. J Plant Physiol 142:502–505CrossRefGoogle Scholar
  29. Makhzoum A, Benyammi R, Moustafa K, Trémouillaux-Guiller J (2014) Recent advances on host plants and expression cassettes’ structure and function in plant molecular pharming. BioDrugs 28:145–159CrossRefPubMedGoogle Scholar
  30. Makhzoum A, Petit-Paly G, St Pierre B, Bernards MA (2011) Functional analysis of the DAT gene promoter using transient Catharanthus roseus and stable Nicotiana tabacum transformation systems. Plant Cell Rep 30:1173–1182CrossRefPubMedGoogle Scholar
  31. Makhzoum A, Sharma P, Bernards MA, Trémouillaux-Guiller J (2013) Hairy roots: an ideal platform for transgenic plant production and other promising applications. In: Gang DR (ed) Phytochemicals, plant growth, and the environment. Springer, New York, pp 95–142CrossRefGoogle Scholar
  32. Moyano E, Fornalé S, Palazón J, Cusidó RM, Bonfill M, Morales C, Piñol MT (1999) Effect of Agrobacterium rhizogenes T-DNA on alkaloid production in Solanaceae plants. Phytochemistry 52:1287–1292CrossRefGoogle Scholar
  33. Mulabagal V, Tsay HS (2004) Plant cell cultures: an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 1:29–48Google Scholar
  34. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15.3:473–497Google Scholar
  35. Nogué S, Pujol L, Sanz P, de la Torre R (1995) Datura stramonium poisoning. Identification of tropane alkaloids in urine by gas chromatography–mass spectrometry. J Int Med Res 23:132–137PubMedGoogle Scholar
  36. Pham NB, Schafer H, Wink M (2012) Production and secretion of recombinant thaumatin in tobacco hairy root cultures. Biotechnol J 7:537–545CrossRefPubMedGoogle Scholar
  37. Pitta-Alvarez SI, Spollansky TC, Giulietti AM (2000a) Scopolamine and hyoscyamine production by hairy root cultures of Brugmansia candida: influence of calcium chloride, hemicellulase and theophylline. Biotechnol Lett 22:1653–1656CrossRefGoogle Scholar
  38. Pitta-Alvarez SI, Spollansky TC, Giulietti AM (2000b) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme Microbiol Technol 26:252–258CrossRefGoogle Scholar
  39. Radman R, Saez T, Bucke C, Keshavarz T (2003) Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem 37:91–102CrossRefPubMedGoogle Scholar
  40. Roberts SC, Shuler ML (1997) Large-scale plant cell culture. Curr Opin Biotechnol 8:154–159CrossRefPubMedGoogle Scholar
  41. Seki H, Nishizawa T, Tanaka N, Niwa Y, Yoshida S, Muranaka T (2005) Hairy root-activation tagging: a high-throughput system for activation tagging in transformed hairy roots. Plant Mol Biol 59:793–807CrossRefPubMedGoogle Scholar
  42. Sevon N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868CrossRefPubMedGoogle Scholar
  43. Skarjinskaia M, Ruby K, Araujo A, Taylor K, Gopalasamy-Raju V, Musiychuk K, Chichester JA, Palmer GA, de la Rosa P, Mett V, Ugulava N, Streatfield SJ, Yusibov V (2013) Hairy roots as a vaccine production and delivery system. Adv Biochem Eng Biotechnol 134:115–134PubMedGoogle Scholar
  44. Souret FF, Kim Y, Wyslouzil BE, Wobbe KK, Weathers PJ (2003) Scale-up of Artemisia annua L. hairy root cultures produces complex patterns of terpenoid gene expression. Biotechnol Bioeng 83:653–667CrossRefPubMedGoogle Scholar
  45. Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43CrossRefPubMedGoogle Scholar
  46. Toivonen L (1993) Utilization of hairy root cultures for production of secondary metabolites. Biotechnol Prog 9:12–20CrossRefGoogle Scholar
  47. Wu JY, Wong K, Ho KP, Zhou LG (2005) Enhancement of saponin production in Panax ginseng cell culture by osmotic stress and nutrient feeding. Enzyme Microbiol Technol 36:133–138CrossRefGoogle Scholar
  48. Yukimune Y, Hara Y, Yamada Y (1994) Tropane alkaloid production in root cultures of Duboisia myoporoides obtained by repeated selection. Biosci Biotechnol Biochem 58:1443–1446CrossRefGoogle Scholar
  49. Zabetakis I, Edwards R, O’Hagan D (1999) Elicitation of tropane alkaloid biosynthesis in transformed root cultures of Datura stramonium. Phytochemistry 50:53–56CrossRefGoogle Scholar
  50. Zhao J, Hu Q, Guo YQ, Zhu WH (2001) Effects of stress factors, bioregulators, and synthetic precursors on indole alkaloid production in compact callus clusters cultures of Catharanthus roseus. Appl Microbiol Biotechnol 55:693–698CrossRefPubMedGoogle Scholar
  51. Zhao J, Zhu WH, Hu Q, Guo Y-Q (2000) Improvement of indole alkaloid production in Catharanthus roseus cell cultures by osmotic shock. Biotechnol Lett 22:1227–123CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2015

Authors and Affiliations

  • Boualem Harfi
    • 1
  • Majda Khelifi-Slaoui
    • 1
  • Mohamed Bekhouche
    • 1
  • Roukia Benyammi
    • 1
  • Kathleen Hefferon
    • 2
  • Abdullah Makhzoum
    • 3
    Email author
  • Lakhdar Khelifi
    • 1
    Email author
  1. 1.Laboratoire des Ressources Génétiques et BiotechnologiesENSAAlgiersAlgeria
  2. 2.Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
  3. 3.Department of BiologyUniversity of Western OntarioLondonCanada

Personalised recommendations