Robust carbohydrate dynamics based on sucrose resynthesis in developing Norway spruce somatic embryos at variable sugar supply

  • Martin Kubeš
  • Nikola Drážná
  • Hana Konrádová
  • Helena Lipavská
Developmental Biology/Morphogenesis


Growth regulators and carbohydrates are key regulatory factors that affect somatic embryogenesis. Carbohydrates serve as energy and carbon sources, osmotica and osmoprotectants and are important signal molecules. Most information about the role of carbohydrates in somatic embryogenesis in Norway spruce has been obtained with embryos grown on semi-solid media. The aim of the present study was to gain a better understanding of the effects of exogenous carbohydrates through modification of medium components (sugars) and physical state (liquid and semi-solid media). Rafts, floating on liquid medium, were used to allow precise manipulation of carbohydrate availability, though it did not result in the highest embryo yields. Our results indicate the following for Norway spruce somatic embryo development: (1) overall carbohydrate dynamics in somatic embryos cultivated on liquid or semi-solid media were similar; (2) the total carbohydrate content, however, was higher in somatic embryos cultivated on liquid media; (3) sucrose was present in somatic embryos even when they matured on sucrose-free media; (4) sucrose content in liquid sucrose-supplemented maturation media decreased sharply during a 1-wk subculture interval; (5) the accumulation of the raffinose family oligosaccharides during desiccation was determined independently of previous sugar supply; and (6) a decrease of sucrose and an increase of hexoses contents accompanied somatic embryo germination.


Sucrose Raffinose family oligosaccharides Picea abies Somatic embryogenesis Liquid medium Semi-solid medium 



We wish to thank Wendy Peer for help with English corrections. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic (Grant No. MSM 0021620858) and the Grant Agency of the Charles University (Grant No. GAUK 656512).


  1. Attree S. M.; Budimir S.; Fowke L. C. Somatic embryogenesis and plantlet regeneration from cultured shoots and cotyledons of seedlings germinated from stored seed of black and white spruce (Picea mariana and Picea glauca). Can J Bot 68: 30–34; 1990a.CrossRefGoogle Scholar
  2. Attree S. M.; Fowke L. C. Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tiss Org Cult 35: 1–35; 1993.CrossRefGoogle Scholar
  3. Attree S. M.; Moore D.; Sawhney V. K.; Fowke L. C. Enhanced maturation and desiccation tolerance of white spruce (Picea glauca (Moench.) Voss.) somatic embryos: effects of a non-plasmolysing water stress and abscisic acid. Ann Bot 68: 519–525; 1991.Google Scholar
  4. Attree S. M.; Pomeroy M. K.; Fowke L. C. Development of white spruce (Picea glauca (Moench.) Voss.) somatic embryos during culture with abscisic acid and osmoticum, and their tolerance to drying and frozen storage. J Exp Bot 46: 433–439; 1995.CrossRefGoogle Scholar
  5. Attree S. M.; Tautorus T. E.; Dunstan D. I.; Fowke L. C. Somatic embryo maturation, germination, and soil establishment of plants of black and white spruce (Picea mariana and Picea glauca). Can J Bot 68: 2583–2589; 1990b.CrossRefGoogle Scholar
  6. Belmonte M. E.; Macey J.; Yeung E. C.; Stasolla C. The effect of osmoticum on ascorbate and glutathione metabolism during white spruce (Picea glauca) somatic embryo development. Plant Physiol Biochem 43: 337–346; 2005.PubMedCrossRefGoogle Scholar
  7. Blanc G.; Lardet L.; Martin A.; Jacob J. L.; Carron M. P. Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Müll. Arg.). J Exp Bot 53: 1453–1462; 2002.PubMedCrossRefGoogle Scholar
  8. Bonga J. M.; von Aderkas P. In vitro culture of trees. Kluwer Academic Publishers, Dordrecht; 1992.CrossRefGoogle Scholar
  9. Bozhkov P. V.; von Arnold S. Polyethylene glycol promotes maturation but inhibits further development of Picea abies somatic embryos. Physiol Plantarum 104: 211–224; 1998.CrossRefGoogle Scholar
  10. Businge E.; Brackmann K.; Moritz T.; Egertsdotter U. Metabolite profiling reveals clear metabolic changes during somatic embryo development of Norway spruce (Picea abies). Tree Physiol 32: 232–244; 2012.PubMedCrossRefGoogle Scholar
  11. Carman J. G.; Reese G.; Fuller R. J.; Ghermay T.; Timmis R. Nutrient and hormone levels in Douglas fir corrosion cavities, megagametophytes, and embryos during embryony. Can J Forest Res 35: 2447–2456; 2005.CrossRefGoogle Scholar
  12. Dyachok J. V.; Wiweger M.; Kenne L.; von Arnold S. Endogenous nod-factor-like signal molecules promote early somatic embryo development in Norway spruce. Plant Physiol 128: 523–533; 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Egertsdotter U.; von Arnold S. Importance of arabinogalactans proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiol Plantarum 93: 334–345; 1995.CrossRefGoogle Scholar
  14. Find J. I. Changes in endogenous ABA levels in developing somatic embryos of Norway spruce (Picea abies (L.) Karst.) in relation to maturation medium, desiccation and germination. Plant Sci 128: 75–83; 1997.CrossRefGoogle Scholar
  15. Finer J. J.; Kriebel H. B.; Becwar M. R. Initiation of embryogenic callus and suspension cultures of eastern white pine (Pinus strobus L.). Plant Cell Rep 8: 203–206; 1989.PubMedCrossRefGoogle Scholar
  16. Galerne M.; Bercetche J.; Dereuddre J. Cryoconservation of embryogenic callus of Norway spruce (Picea abies (L.) Karst.): influence of different factors on callus recovery and on embryo and plant production. B Soc Bot Fr–Lett 139: 331–344; 1992.Google Scholar
  17. Ganesan M.; Thiruppathi S.; Eswaran K.; Reddy C. R. K.; Jha B. Development of an improved method of cultivation to obtain high biomass of the red alga Gelidiella acerosa (Gelidiales, Rhodophyta) in the open sea. Biomass Bioenerg 35: 2729–2736; 2011.CrossRefGoogle Scholar
  18. George E. F. Plant Propagation by Tissue Culture: Part 1. The Technology. Exegetics Ltd., Edington, pp 322–326; 1993.Google Scholar
  19. Gibson S. I. Sugar and phytohormone response pathways: navigating a signalling network. J Exp Bot 55: 253–264; 2004.PubMedCrossRefGoogle Scholar
  20. Gorbatenko O.; Hakman I. Desiccation-tolerant somatic embryos of Norway spruce (Picea abies) can be produced in liquid cultures and regenerated into plantlets. Int J Plant Sci 162: 1211–1218; 2001.CrossRefGoogle Scholar
  21. Gösslová M.; Svobodová H.; Lipavská H.; Albrechtová J.; Vreugdenhil D. Comparing carbohydrate status during Norway spruce seed development and somatic embryo formation. In Vitro Cell Dev Biol - Plant 37: 24–28; 2001.CrossRefGoogle Scholar
  22. Gupta P. K.; Durzan D. J. Somatic polyembryogenesis from callus of mature sugar pine embryos. Bio-Technol 4: 643–645; 1986.CrossRefGoogle Scholar
  23. Gupta P. K.; Grob J. A. Somatic embryogenesis in conifers. In: Jain S.; Gupta P. K.; Newton R. (eds) Somatic Embryogenesis in Woody Plants 1. Kluwer Academic Publishers, Dordrecht, pp 81–98; 1995.Google Scholar
  24. Gupta P. K.; Pullman G.; Timmis R. Forestry in the 21st century. Bio-Technol 11: 454–459; 1993.CrossRefGoogle Scholar
  25. Hakman I.; von Arnold S. Somatic embryogenesis and plant regeneration from suspension cultures of Picea glauca (White Spruce). Physiol Plantarum 72: 579–587; 1988.CrossRefGoogle Scholar
  26. Hvoslef-Eide A. K.; Munster C.; Heyerdahl P. H.; Lyngved R.; Olsen O. A. S. Liquid culture systems for plant propagation. Acta Hortic 625: 173–185; 2003.Google Scholar
  27. Hvoslef-Eide A. K.; Olsen O. A. S.; Lyngved R.; Munster C. Bioreactor design for propagation of somatic embryos. Plant Cell Tiss Org Cult 81: 265–276; 2005.CrossRefGoogle Scholar
  28. Iraqi D.; Le V. Q.; Lamhamedi M. S.; Tremblay F. M. Sucrose utilization during somatic embryo development in black spruce: involvement of apoplastic invertase in the tissue and of extracellular invertase in the medium. J Plant Physiol 162: 115–124; 2005.PubMedCrossRefGoogle Scholar
  29. Iraqi D.; Tremblay F. M. Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J Exp Bot 52: 2301–2311; 2001a.PubMedCrossRefGoogle Scholar
  30. Iraqi D.; Tremblay F. M. The role of sucrose during maturation of black spruce (Picea mariana) and white spruce (Picea glauca). Physiol Plantarum 111: 381–388; 2001b.CrossRefGoogle Scholar
  31. Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7: 235–246; 2004.PubMedCrossRefGoogle Scholar
  32. Kong L. S.; Yeung E. C. Effects of silver nitrate and polyethylene glycol on white spruce (Picea glauca) somatic embryo development: enhancing cotyledonary embryo formation and endogenous ABA content. Physiol Plantarum 93: 298–304; 1995.CrossRefGoogle Scholar
  33. Konrádová H.; Lipavská H.; Albrechtová J.; Vreugdenhil D. Sucrose metabolism during somatic and zygotic embryogenesis in Norway spruce: content of soluble saccharides and localisation of key enzyme activities. J Plant Physiol 159: 387–396; 2002.CrossRefGoogle Scholar
  34. Lipavská H.; Konrádová H. Somatic embryogenesis in conifers: the role of carbohydrate metabolism. In Vitro Cell Dev Biol - Plant 40: 23–30; 2004.CrossRefGoogle Scholar
  35. Lipavská H.; Svobodová H.; Albrechtová J.; Kumstýřová L.; Vágner M.; Vondráková Z. Carbohydrate status during static embryo maturation in Norway spruce. In Vitro Cell Dev Biol - Plant 36: 260–267; 2000.CrossRefGoogle Scholar
  36. Nørgaard J. V. Somatic embryo maturation and plant regeneration in Abies nordmandiana Lk. Plant Sci 124: 211–221; 1997.CrossRefGoogle Scholar
  37. Pâques M.; Berceteche J.; Dumas E. Liquid media to improve and reduce the cost of in vitro conifer propagation. Acta Hortic 319: 95–100; 1992.Google Scholar
  38. Pâques M.; Berceteche J.; Palada M. Prospects and limits of somatic embryogenesis of Picea abies. In: Jain S.; Gupta P. K.; Newton R. (eds) Somatic Embryogenesis in Woody Plants 1. Kluwer Academic Publishers, Dordrecht, pp 399–414; 1995.Google Scholar
  39. Pelacho A. M.; Martin-Closas L.; Sanfeliu J. L. I. In vitro induction of potato tuberization by organic acids. Potato Res 42: 585–591; 1999.CrossRefGoogle Scholar
  40. Pullman G. S.; Buchanan M. Identification and quantitative analysis of stage-specific carbohydrates in loblolly pine (Pinus taeda) zygotic embryo and female gametophyte tissues. Tree Physiol 28: 985–996; 2008.PubMedCrossRefGoogle Scholar
  41. Pullman G. S.; Johnson S. Loblolly pine (Pinus taeda) female gametophyte and embryo pH changes during seed development. Tree Physiol 29: 829–836; 2009.PubMedCrossRefGoogle Scholar
  42. Ratnaparkhe S. M.; Egertsdotter E. M. U.; Flinn B. S. Identification and characterization of a matrix metalloproteinase (Pta1-MMP) expressed during Loblolly pine (Pinus taeda) seed development, germination completion, and early seedling establishment. Planta 230: 339–354; 2009.PubMedCrossRefGoogle Scholar
  43. Rolland F.; Baena-Gonzalez E.; Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57: 675–709; 2006.PubMedCrossRefGoogle Scholar
  44. Rook F.; Bevan M. W. Genetic approaches to understanding sugar-response pathways. J Exp Bot 54: 495–501; 2003.PubMedCrossRefGoogle Scholar
  45. Ruaud J. N.; Bercetche J.; Paques M. First evidence of somatic embryogenesis from needles of 1-year-old Picea abies plants. Plant Cell Rep 11: 563–566; 1992.PubMedCrossRefGoogle Scholar
  46. Salajová T.; Salaj J. Somatic embryogenesis and plantlet regeneration from cotyledon explants isolated from emblings and seedlings of hybrid firs. J Plant Physiol 158: 747–755; 2001.CrossRefGoogle Scholar
  47. Schuller A.; Reuther G. Response of Abies alba embryonal-suspensor mass to various carbohydrate treatments. Plant Cell Rep 12: 199–202; 1993.PubMedCrossRefGoogle Scholar
  48. Smeekens S. Sugar-induced signal transduction in plants. Annu Rev Plant Phys 51: 19–81; 2000.Google Scholar
  49. Smeekens S.; Ma J. K.; Hanson J.; Rolland F. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13: 274–279; 2010.PubMedCrossRefGoogle Scholar
  50. Stasolla C.; van Zyl L.; Egertsdotter U.; Craig D.; Liu W. B.; Sederoff R. R. Transcript profiles of stress-related genes in developing white spruce (Picea glauca) somatic embryos cultured with polyethylene glycol. Plant Sci 165: 719–729; 2003.CrossRefGoogle Scholar
  51. Stasolla C.; Yeung E. C. Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tiss Org Cult 74: 15–35; 2003.CrossRefGoogle Scholar
  52. Taber R. P.; Zhang C. H.; Hu W. S. Kinetics of Douglas fir (Pseudotsuga menziesii) somatic embryo development. Can J Bot 76: 863–871; 1998.Google Scholar
  53. Tang W.; Newton R. J. Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep 22: 1–15; 2003.PubMedCrossRefGoogle Scholar
  54. Tautorus T. E.; Attree S. M.; Fowke L. C.; Dunstan D. I. Somatic embryogenesis from immature and mature zygotic embryos, and embryo regeneration from protoplasts in black spruce (Picea mariana Mill.). Plant Sci 67: 115–124; 1990.CrossRefGoogle Scholar
  55. Tautorus T. E.; Fowke L. C.; Dunstan D. I. Somatic embryogenesis in conifers. Can J Bot 69: 1873–1899; 1991.CrossRefGoogle Scholar
  56. Timmis R. Bioprocessing for tree production in the forest industry: conifer somatic embryogenesis. Biotechnol Progr 14: 156–166; 1998.CrossRefGoogle Scholar
  57. Tremblay L.; Tremblay F. M. Carbohydrate requirements for the development of black spruce (Picea mariana (Mill.) B.S.P.) and red spruce (Picea rubens Sarg.) somatic embryos. Plant Cell Tiss Org Cult 27: 95–103; 1991.CrossRefGoogle Scholar
  58. Tremblay L.; Tremblay F. M. Maturation of black spruce somatic embryos: sucrose hydrolysis and resulting osmotic pressure of the medium. Plant Cell Tiss Org Cult 42: 39–46; 1995.CrossRefGoogle Scholar
  59. Vágner M.; Vondráková Z.; Fischerová L.; Opatrná J. Norway spruce somatic embryogenesis: membrane rafts as a compromise between liquid and solidified media. In: Hvoslef-Eide A. K.; Preil W. (eds) Liquid Culture Systems for In Vitro Plant Propagation. Springer, Netherlands, pp 295–302; 2005.CrossRefGoogle Scholar
  60. van Winkle S. C.; Pullman G. S. The combined impact of pH and activated carbon on the elemental composition of a liquid conifer embryogenic tissue initiation medium. Plant Cell Rep 22: 303–311; 2003.PubMedCrossRefGoogle Scholar
  61. Vestman D.; Larsson E.; Uddenberg D.; Cairney J.; Clapham D.; Sundberg E.; von Arnold S. Important processes during differentiation and early development of somatic embryos of Norway spruce as revealed by changes in global gene expression. Tree Genet Genomes 7: 347–362; 2011.CrossRefGoogle Scholar
  62. von Arnold S.; Sabala I.; Bozhkov P.; Dyachok J.; Filonova L. Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org Cult 69: 233–249; 2002.CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2014

Authors and Affiliations

  • Martin Kubeš
    • 1
    • 2
  • Nikola Drážná
    • 1
  • Hana Konrádová
    • 1
  • Helena Lipavská
    • 1
  1. 1.Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
  2. 2.Institute of Experimental BotanyThe Academy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations