A novel method based on combination of semi-in vitro and in vivo conditions in Agrobacterium rhizogenes-mediated hairy root transformation of Glycine species

  • Manijeh Mohammadi-Dehcheshmeh
  • Esmaeil Ebrahimie
  • Stephen D. Tyerman
  • Brent N. Kaiser


Despite numerous advantages of the many tissue culture-independent hairy root transformation protocols, the process is often compromised in the initial in vitro culture stage where inability to maintain high humidity and the delivery of nourishing culture medium decrease cellular morphogenesis and organ formation efficiency. Ultimately, this influences the effective transfer of produced plantlets during transfer from in vitro to in vivo conditions, where low survival rates occur during the acclimation period. We have developed an intermediate protocol for Agrobacterium rhizogenes transformation in Glycine species by combining a two-step in vitro and in vivo process that greatly enhances the efficiency of hairy root formation and which simplifies the maintenance of the transformed roots. In this protocol, cotyledonary nodes of Glycine max and Glycine canescens seedlings were infected by A. rhizogenes K599 carrying a reporter gene construct constitutively expressing green fluorescent protein (GFP). Glass containers containing sand and nutrient solution were employed to provide a moist clean microenvironment for the generation of hairy roots from inoculated seedlings. Transgenic roots were then noninvasively identified from nontransgenic roots based on the detection of GFP. Main roots and nontransgenic roots were removed leaving transgenic hairy roots to support seedling development, all within 1 mo of beginning the experiment. Overall, this protocol increased the transformation efficiency by more than twofold over traditional methods. Approximately 88% and 100% of infected plants developed hairy roots from G. max and G. canescens, respectively. On average, each infected plant produced 10.9 transformed hairy roots in G. max and 13–20 in G. canescens. Introduction of this simple protocol is a significant advance that eliminates the long and genotype-dependent tissue culture procedure while taking advantage of its optimum in vitro qualities to enhance the micropropagation rate. This research will support the increasing use of transient transgenic hairy roots for the study of plant root biology and symbiotic interactions with Rhizobium spp.


Genetic transformation Genotype independency Glycine canescens Glycine max 



We thank Gwenda Mayo (Australian Centre of Plant Functional Genomics) for her valuable help with microscopy. In addition, we thank Dr. Anthony H. D. Brown and Dr. John Brockwell, CSIRO Plant Industry, Canberra, Australia, for providing G. canescens (wild soybean) seeds and specific strains of Rhizobium for nodulation of G. canescens. Part of this study is supported through a grant awarded by Bioversity International (Rome, Italy) awarded to Esmaeil Ebrahimie. We thank Elizabeth D. Goldberg (Head, Capacity Development Unit of Bioversity International) for the opportunity for undertaking research on G. canescens. Research funding is through the Australian Research Council Discovery program awarded to BNK.


  1. Boisson-Dernier A.; Chabaud M.; Garcia F.; Bécard G.; Rosenberg C.; Barker D. G. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol. Plant Microbe Interact. 14: 695–700; 2001.PubMedCrossRefGoogle Scholar
  2. Brown A. H. D.; Burdon J. J.; Grace J. P. Genetic structure of Glycine canescens, a perennial relative of soybean. Theor. Appl. Genet. 79: 729–736; 1990.PubMedCrossRefGoogle Scholar
  3. Byrne M.; McDonnell R.; Wright M.; Carnes M. Strain and cultivar specificity in the Agrobacterium-soybean interaction. Plant Cell Tiss. Organ Cult. 8: 3–15; 1987.CrossRefGoogle Scholar
  4. Cao D.; Hou H.; Song S.; Wu C.; Gao Y.; Han T. Assessment of conditions affecting Agrobacterium rhizogenes-mediated transformation of soybean. Plant Cell Tiss. Organ Cult. 96: 45–52; 2009.CrossRefGoogle Scholar
  5. Cheng T.-Y.; Saka H.; Voqui-Dinh T. H. Plant regeneration from soybean cotyledonary node segments in culture. Plant Sci. Lett. 19: 91–99; 1980.CrossRefGoogle Scholar
  6. Cheon C. I.; Lee N. G.; Siddique A. B.; Bal A. K.; Verma D. P. Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J. 12: 4125–4135; 1993.PubMedCentralPubMedGoogle Scholar
  7. Collier R.; Fuchs B.; Walter N.; Kevin Lutke W.; Taylor C. G. Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J. 43: 449–457; 2005.PubMedCrossRefGoogle Scholar
  8. Diaz C. L.; Melchers L. S.; Hooykaas P. J. J.; Lugtenberg B. J. J.; Kijne J. W. Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338: 579–581; 1989.CrossRefGoogle Scholar
  9. Donaldson P. A.; Simmonds D. H. Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Rep. 19: 478–484; 2000.CrossRefGoogle Scholar
  10. Ebrahimie E.; Habashy A. A.; Mohammadie-Dehcheshmeh M.; Ghannadha M. R.; Ghareyazie B.; Yazdi-Samadi B. Direct shoot regeneration from mature embryo as a rapid and genotype-independent pathway in tissue culture of heterogenous diverse sets of cumin (Cuminum cyminum L.) genotypes. In Vitro Cell Dev. Biol. – Plant 42: 455–460; 2006.CrossRefGoogle Scholar
  11. Ebrahimie E.; Naghavi M. R.; Hosseinzadeh A.; Behamta M. R.; Mohammadi-Dehcheshmeh M.; Sarrafi A.; Spangenberg G. Induction and comparison of different in vitro morphogenesis pathways using embryo of cumin (Cuminum cyminum L.) as a model material. Plant Cell Tiss. Organ Cult. 90: 293–311; 2007.CrossRefGoogle Scholar
  12. Hansen J.; Jørgensen J.-E.; Stougaard J.; Marcker K. Hairy roots—a short cut to transgenic root nodules. Plant Cell Rep. 8: 12–15; 1989.PubMedCrossRefGoogle Scholar
  13. Hartman G. L.; Gardner M. E.; Hymowitz T.; Naidoo G. C. Evaluation of perennial Glycine species for resistance to soybean fungal pathogens that cause sclerotinia stem rot and sudden death syndrome. Crop Sci. 40: 545–549; 2000.CrossRefGoogle Scholar
  14. Henzi M. X.; Christey M. C.; McNeil D. L. Factors that influence Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica). Plant Cell Rep. 19: 994–999; 2000.CrossRefGoogle Scholar
  15. Jensen J. S.; Marcker K. A.; Otten L.; Schell J. Nodule-specific expression of a chimaeric soybean leghaemoglobin gene in transgenic Lotus corniculatus. Nature 321: 669–674; 1986.CrossRefGoogle Scholar
  16. Karimi M.; Inzé D.; Depicker A. GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7: 193–195; 2002.PubMedCrossRefGoogle Scholar
  17. Kereszt A.; Li D.; Indrasumunar A.; Nguyen C. D. T.; Nontachaiyapoom S.; Kinkema M.; Gresshoff P. M. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat. Protoc. 2: 948–952; 2007.PubMedCrossRefGoogle Scholar
  18. Kouas S.; Louche F.; Debez A.; Plassard C.; Drevon J. J.; Abdelly C. Effect of phosphorus deficiency on acid phosphatase and phytase activities in common bean (Phaseolus vulgaris L.) under symbiotic nitrogen fixation. Symbiosis 3: 141–149; 2009.CrossRefGoogle Scholar
  19. Kumar V.; Jones B.; Davey M. R. Transformation by Agrobacterium rhizogenes and regeneration of transgenic shoots of the wild soybean Glycine argyrea. Plant Cell Rep. 10: 135–138; 1991.PubMedGoogle Scholar
  20. Lu B.-R. Conserving biodiversity of soybean gene pool in the biotechnology era. Plant Species Biol. 19: 115–125; 2004.CrossRefGoogle Scholar
  21. Meurer C. A.; Dinkins R. D.; Collins G. B. Factors affecting soybean cotyledonary node transformation. Plant Cell Rep. 18: 180–186; 1998.CrossRefGoogle Scholar
  22. Olhoft P.; Bernal L.; Grist L.; Hill D.; Mankin S.; Shen Y.; Kalogerakis M.; Wiley H.; Toren E.; Song H.-S.; Hillebrand H.; Jones T. A novel Agrobacterium rhizogenes-mediated transformation method of soybean [Glycine max (L.) Merrill] using primary-node explants from seedlings. In Vitro Cell Dev. Biol. – Plant 43: 536–549; 2007.CrossRefGoogle Scholar
  23. Olhoft P.; Flagel L.; Donovan C.; Somers D. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216: 723–735; 2003.PubMedGoogle Scholar
  24. Olhoft P.; Lin K.; Galbraith J.; Nielsen N.; Somers D. The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep. 20: 731–737; 2001.CrossRefGoogle Scholar
  25. Pueppke S. G. Nodulating associations among rhizobia and legumes of the genus Glycine subgenus Glycine. Plant Soil 109: 189–193; 1988.CrossRefGoogle Scholar
  26. Rech E. L.; Golds T. J.; Hammatt N.; Mulligan B. J.; Davey M. R. Agrobacterium rhizogenes mediated transformation of the wild soybeans Glycine canescens and G. clandestina: production of transgenic plants of G. canescens. J. Exp. Bot. 39: 1275–1285; 1988.CrossRefGoogle Scholar
  27. Somers D. A.; Samac D. A.; Olhoft P. M. Recent advances in legume transformation. Plant Physiol. 131: 892–899; 2003.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Stiller J.; Martirani L.; Tuppale S.; Chian R.-J.; Chiurazzi M.; Gresshoff P. M. High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. J. Exp. Bot. 48: 1357–1365; 1997.CrossRefGoogle Scholar
  29. Veena V.; Taylor C. Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev. Biol. – Plant 43: 383–403; 2007.CrossRefGoogle Scholar
  30. Ziv M. In vitro acclimatisation. In: Aitken-Christie J.; Kozai T.; Smith M. (eds) Automation and environmental control in plant tissue culture. Kluwer Academic Publisher, Dordrecht, pp 301–319; 1995.Google Scholar

Copyright information

© The Society for In Vitro Biology 2013

Authors and Affiliations

  • Manijeh Mohammadi-Dehcheshmeh
    • 1
  • Esmaeil Ebrahimie
    • 1
    • 2
  • Stephen D. Tyerman
    • 1
  • Brent N. Kaiser
    • 1
  1. 1.School of Agriculture, Food, and WineThe University of AdelaideAdelaideAustralia
  2. 2.School of Molecular and Biomedical ScienceThe University of AdelaideAdelaideAustralia

Personalised recommendations