In Vitro Cellular & Developmental Biology - Plant

, Volume 49, Issue 6, pp 759–764 | Cite as

Suppression of ethylene levels promotes morphogenesis in pepper (Capsicum annuum L.)

  • Diego Silva Batista
  • Leonardo Lucas Carnevalli Dias
  • Amanda Ferreira Macedo
  • Mailson Monteiro do Rêgo
  • Elizanilda Ramalho do Rêgo
  • Eny Iochevet Segal Floh
  • Fernando Luiz Finger
  • Wagner Campos Otoni


Ethylene and polyamines (PAs) are two phytohormones that play important roles during in vitro morphogenesis of several plant species. The interaction between ethylene and PAs has been of interest because both have S-adenosylmethionine as a precursor. To study the influence of ethylene and PAs on in vitro morphogenesis of an ornamental pepper, we added an ethylene scavenger, PAs, a PA inhibitor, and compounds that affect ethylene biosynthesis and activity to the regeneration medium. Regeneration frequencies increased in response to treatment with ethylene inhibitors (aminoethoxyvinylglycine and silver thiosulfate) and an ethylene scavenger (mercury perchlorate). Treatment with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid reduced the regeneration frequency, increased callus formation, and increased ethylene levels; similar results were obtained in response to treatment with the PA inhibitor methylglyoxal-bis(guanylhydrazone). By contrast, treatment with PAs (particularly spermidine and spermine) decreased ethylene levels, increased the regeneration frequency, and increased shoot bud formation. These results suggest a coordinated regulation of ethylene and polyamines because the suppression of ethylene levels using ethylene inhibitors, polyamines, or mercury perchlorate increased the in vitro regeneration frequency and morphogenic responses of Capsicum annuum L.


Morphogenesis Plant regeneration Putrescine Spermidine Spermine Phytohormone crosstalk 



The authors thank the Brazilian sponsoring agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior) for financial support.


  1. An F.; Zhao Q.; Ji Y.; Li W.; Jiang Z.; Yu X.; Zhang C.; Han Y.; He W.; Liu Y.; Zhang S.; Ecker J. R.; Guo H. Ethylene-induced stabilization of ethylene INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22: 2384–2401; 2010. doi: 10.1105/tpc.110.076588.PubMedCrossRefGoogle Scholar
  2. Arroyo R.; Revilla M. A. In vitro plant regeneration from cotyledon and hypocotyl segments in two bell pepper cultivars. Plant Cell Rep 10: 414–416; 1991.PubMedCrossRefGoogle Scholar
  3. Bais H. P.; Ravishankar G. A. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69: 1–34; 2002. doi: 10.1023/A:1015064227278.CrossRefGoogle Scholar
  4. Barbosa W. M.; Otoni W. C.; Carnellossi M.; Silva E.; Azevedo A. A.; Vieira G. Rhizogenesis in vitro shoot cultures of passion fruit (Passiflora edulis f. flavicarpa Deg.) is affected by ethylene precursor and by inhibitors. Int J Hortic Sci 7: 47–51; 2001.Google Scholar
  5. Baron K.; Stasolla C. The role of polyamines during in vivo and in vitro development. In Vitro Cell Dev Biol - Plant 44: 384–395; 2008. doi: 10.1007/s11627-008-9176-4.CrossRefGoogle Scholar
  6. Bartley G. E.; Ishida B. K. Ethylene-sensitive and insensitive regulation of transcription factor expression during in vitro tomato sepal ripening. J Exp Bot 58: 2043–2205; 2007. doi: 10.1093/jxb/erm075.PubMedCrossRefGoogle Scholar
  7. Bleecker A. B.; Kende H. Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16: 1–18; 2000. doi: 10.1146/annurev.cellbio.16.1.1.PubMedCrossRefGoogle Scholar
  8. Bregoli A. M.; Ziosi V.; Biondi S.; Claudio B.; Costa G.; Torrigiani P. A comparison between intact fruit and fruit explants to study the effect of polyamines and aminoethoxyvinylglycine (AVG) on fruit ripening in peach and nectarine (Prunus persica L. Batch). Postharvest Biol Technol 42: 31–40; 2006. doi: 10.1016/j.postharvbio.2006.05.009.CrossRefGoogle Scholar
  9. Dias L. L. C.; Ribeiro D. M.; Santa-Catarina C.; Barros R. S.; Floh E. I. S.; Otoni W. C. Ethylene and polyamine interactions in morphogenesis of Passiflora cincinnata: effects of ethylene biosynthesis and action modulators, as well as ethylene scavengers. Plant Growth Regul 62: 9–19; 2010. doi: 10.1007/s10725-010-9478-5.CrossRefGoogle Scholar
  10. Feirer R. P.; Mignon G.; Litvay J. D. Arginine decarboxylase and polyamines required for embryogenesis in wild carrot. Science 223: 1433–1435; 1984.PubMedCrossRefGoogle Scholar
  11. Franchin C.; Fossati T.; Pasquini E.; Lingua G.; Castiglione S.; Torrigiani P.; Biondi S. High concentrations of zinc and copper induce differential polyamine responses in micropropagated white poplar (Populus alba). Physiol Plant 130: 77–90; 2007. doi: 10.1111/j.1399-3054.2007.00886.x.CrossRefGoogle Scholar
  12. Gamborg O. L.; Miller R. A.; Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50: 151–158; 1968. doi: 10.1016/0014-4827(68)90403-5.PubMedCrossRefGoogle Scholar
  13. Gong Y.; Gao F.; Tang K. In vitro high frequency direct root and shoot regeneration in sweet potato using the ethylene inhibitor silver nitrate. South Afr J Bot 71: 110–113; 2005.Google Scholar
  14. Harpaz-Saad S.; Yoon G. M.; Mattoo A. K.; Kieber J. J. The formation of ACC and competition between polyamines and ethylene for SAM. Annu Plant Rev 44: 53–81; 2012. doi: 10.1002/9781118223086.ch3.Google Scholar
  15. Hu W. W.; Gong H.; Pua E. C. Modulation of SAMDC expression in Arabidopsis thaliana alters in vitro shoot organogenesis. Physiol Plant 128: 740–750; 2006. doi: 10.1111/j.1399-3054.2006.00799.x.CrossRefGoogle Scholar
  16. Hyde C.; Phillip G. Silver nitrate promotes shoot development and plant regeneration of chile pepper (Capsicum annuum L.) via organogenesis. In Vitro Cell Dev Biol-Plant 32: 72–80; 1996. doi: 10.1007/BF02823134.CrossRefGoogle Scholar
  17. Ioannidis N. E.; Cruz J. A.; Kotzabasis K.; Kramer D. M. Evidence that putrescine modulates the higher plant photosynthetic proton circuit. PLoS One 7: 1–6; 2012. doi: 10.1371/journal.pone.0029864.Google Scholar
  18. Kumar V.; Parvatam G.; Ravishankar G. A. AgNO3—a potential regulator of ethylene activity and plant growth modulator. Electronic J Biotechnol 12: 1–15; 2009. doi: 10.2225/vol12-issue2-fulltext-1.Google Scholar
  19. Kumar V.; Sharma A.; Prasad B. C. N.; Gururaj S. B.; Gridhar P.; Ravishankar G. A. Direct shoot bud induction and plant regeneration in Capsicum frutescens Mill.: influence of polyamines and polarity. Acta Physiol Plant 29: 11–18; 2007. doi: 10.1007/s11738-006-0002-5.CrossRefGoogle Scholar
  20. Kumari I. P.; George T. S. In vitro clonal shoot morphogenesis of commercial Dendrobium orchid cultivars in polyamines supplemented medium. J Trop Agric 49: 118–120; 2011.Google Scholar
  21. Leon-Reyes A.; Du Y.; Koornneef A.; Proietti S.; Körbes A. P.; Memelink J.; Pieterse C. M. J.; Ritsema T. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Mol Plant Microbe Interact 23: 187–197; 2010. doi: 10.1094/MPMI-23-2-0187.PubMedCrossRefGoogle Scholar
  22. Lin Z.; Zong S.; Grieson D. Recent advances in ethylene research. J Exp Bot 60: 3311–3336; 2009. doi: 10.1093/jxb/erp204.PubMedCrossRefGoogle Scholar
  23. Liu J. H.; Kitashiba H.; Wang J.; Ban Y.; Moriguchi T. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol J 24: 117–126; 2007. doi: 10.5511/plantbiotechnology.24.117.CrossRefGoogle Scholar
  24. Martin-Tanguy J. Metabolism and function of polyamines in plants: recent developments (new approaches). Plant Growth Regul 34: 135–148; 2001. doi: 10.1023/A:1013343106574.CrossRefGoogle Scholar
  25. Mayak S.; Tirosh T.; Glick B. R. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42: 565–572; 2004. doi: 10.1016/j.plaphy.2004.05.009.PubMedCrossRefGoogle Scholar
  26. Mendes A. F. S.; Cidade L. C.; Otoni W. C.; Soares-Filho W. S.; Costa M. G. C. Role of auxins, polyamines and ethylene in root formation and growth in sweet orange. Biol Plant 55: 375–378; 2011. doi: 10.1007/s10535-011-0058-y.CrossRefGoogle Scholar
  27. Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497; 1962. doi: 10.1111/j.1399-3054.1962.tb08052.x.CrossRefGoogle Scholar
  28. Núñez-Pastrana R.; Arcos-Ortega G. F.; Souza-Perera R. A.; Sánchez-Borges C. A.; Nakazawa-Ueji Y. E.; García-Villalobos F. J.; Guzmán-Antonio A. A.; Zúñiga-Aguilar J. J. Ethylene, but not salicylic acid or methyl jasmonate, induces a resistance response against Phytophthora capsici in Habanero pepper. Eur J Plant Pathol 131: 669–683; 2011. doi: 10.1007/s10658-011-9841-z.CrossRefGoogle Scholar
  29. Pang X. M.; Nada K.; Kurosawa T.; Ban Y.; Moriguchi T. Effect of methylglyoxal bis-(guanylhydrazone) on polyamine and ethylene biosynthesis of apple fruit after harvest. Acta Physiol Plant 32: 1005–1010; 2010. doi: 10.1007/s11738-010-0473-2.CrossRefGoogle Scholar
  30. Pua C. E.; Sim E. G.; Chi L. G.; Kong F. L. Synergistic effect of ethylene inhibitors and putrescine on shoot regeneration from hypocotyls explants of Chinese radish (Raphanus sativus L. var Longipinnatus Bailey) in vitro. Plant Cell Rep 15: 685–690; 1996. doi: 10.1007/BF00231925.PubMedCrossRefGoogle Scholar
  31. Reid M. S.; Paul J. L.; Farhoomand M. B.; Kofranek A. M.; Staby G. L. Pulse treatments with the silver thiosulfate complex extend the vase life of cut carnations. J Amer Soc Hortic Sci 105: 25–27; 1980.Google Scholar
  32. Reis L. B.; Paiva Neto V. B.; Picoli E. A. T.; Costa M. G. C.; Rêgo M. M.; Carvalho C. R.; Finger F. L.; Otoni W. C. Axillary bud development of passion fruit as affected by ethylene precursor and inhibitors. In Vitro Cell Dev Biol - Plant 39: 618–622; 2003. doi: 10.1079/IVP2003455.CrossRefGoogle Scholar
  33. Roustan J. P.; Latche A.; Fallot J. Control of carrot somatic embryogenesis by AgNO3 an inhibitor of ethylene action effect on arginine decarboxylase activity. Plant Sci 67: 89–95; 1990. doi: 10.1016/0168-9452(90)90054-R.CrossRefGoogle Scholar
  34. Roychoudhury A.; Basu S.; Sengupta D. N. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J Plant Physiol 168: 317–328; 2011. doi: 10.1016/j.jplph.2010.07.009.PubMedCrossRefGoogle Scholar
  35. Santana-Buzzy N.; Canto-Flick A.; Barahona-Pérez F.; Montalvo-Peniche M. C.; Zapata-Castillo P. Y.; Solís-Ruiz A. Regeneration of habanero pepper (Capsicum chinense Jacq.) via organogenesis. HortScience 40: 1829–1831; 2005.Google Scholar
  36. Santana-Buzzy N.; Canto-Flick A.; Iglesias-Andreu L. G.; Montalvo-Peniche M. C.; López-Puc G.; Barahona-Pérez F. Improvement of in vitro culturing of habanero pepper by inhibition of ethylene effects. HortScience 41: 405–409; 2006.Google Scholar
  37. Shoeb F.; Yadav J. S.; Bajaj S.; Rajam M. V. Polyamines as biomarkers for plant regeneration capacity: improvement of regeneration by modulation of polyamine metabolism in different genotypes of indica rice. Plant Sci 160: 1229–1235; 2001. doi: 10.1016/S0168-9452(01)00375-2.PubMedCrossRefGoogle Scholar
  38. Siddikee M. A.; Chauhan O. S.; Tongmin S. A. Regulation of ethylene biosynthesis under salt stress in Red Pepper (Capsicum annuum L.) by 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing halotolerant bacteria. Plant Growth Regul 10: 1–8; 2011. doi: 10.1007/s00344-011-9236-6.Google Scholar
  39. Silveira V.; Floh E. I. S.; Handro W.; Guerra M. P. Effect of plant growth regulators on the cellular growth and levels of intracellular protein, starch and polyamines in embryogenic suspension cultures of Pinus taeda. Plant Cell Tissue Organ Cult 76: 53–60; 2004. doi: 10.1023/A:1025847515435.CrossRefGoogle Scholar
  40. Tang W.; Newyon R. J.; Outhavong V. Exogenously added polyamines recover browning tissues into normal callus cultures and improve plant regeneration in pine. Physiol Plant 122: 386–395; 2004. doi: 10.1111/j.1399-3054.2004.00406.x.CrossRefGoogle Scholar
  41. Trujillo-Moya C.; Gisbert C. The influence of ethylene and ethylene modulators on shoot organogenesis in tomato. Plant Cell Tissue Organ Cult 111: 41–48; 2012. doi: 10.1007/s11240-012-0168-z.CrossRefGoogle Scholar
  42. Zhu C.; Chen Z. Role of polyamines in adventitious shoot morphogenesis from cotyledons of cucumber in vitro. Plant Cell Tissue Organ Cult 81: 45–53; 2005. doi: 10.1007/s11240-004-2773-y.CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2013

Authors and Affiliations

  • Diego Silva Batista
    • 1
  • Leonardo Lucas Carnevalli Dias
    • 1
  • Amanda Ferreira Macedo
    • 2
  • Mailson Monteiro do Rêgo
    • 3
  • Elizanilda Ramalho do Rêgo
    • 3
  • Eny Iochevet Segal Floh
    • 2
  • Fernando Luiz Finger
    • 4
  • Wagner Campos Otoni
    • 1
  1. 1.Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGROUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Laboratório de Biologia Celular (BIOCEL), Instituto de Ciências Biológicas, Departamento de BotânicaUniversidade de São Paulo (USP)São PauloBrazil
  3. 3.Centro de Ciências AgráriasUniversidade Federal da ParaíbaAreiaBrazil
  4. 4.Departamento de FitotecniaUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations