Advertisement

Effects of arsenate on tobacco hairy root and seedling growth, and its removal

  • Melina A. TalanoEmail author
  • Ana L. Wevar Oller
  • Patricia González
  • Soledad Oliva González
  • Elizabeth Agostini
Plant Tissue Culture

Abstract

Arsenic (As) is a highly toxic environmental contaminant to which most living organisms are exposed. Plants have evolved several mechanisms to cope with this toxic metalloid; however, these mechanisms are only partially understood. The response of plants to As phytotoxicity is highly complex, with considerable variation among species. In this study, arsenate (As+5) effects on germination and early root development of tobacco (Nicotiana tabacum) seedlings were investigated. Also, As+5 tolerance and removal efficiency of tobacco hairy roots (HRs) and seedlings were assessed and compared. Total seed germination capacity was not affected by 10 to 200 μM As+5, while primary root length and root branching were reduced by As+5 concentrations that were at or above 100 μM. Both systems were able to tolerate As+5 concentrations of 10 μM since no growth inhibition was detected. For higher As+5 concentrations, phytotoxicity increased, but it was mitigated by higher phosphate (Pi) availability. Under the studied conditions, As+5 removal efficiency of HRs greatly exceeded that of seedlings. Further, tobacco HRs were able to accumulate As in their tissues. These results justify further investigations on As tolerance and detoxification mechanisms in tobacco, an easy-to-transform crop species with high biomass, which could allow evaluation of the possible application of wild type or alternatively transgenic tobacco plants for As phytoextraction.

Keywords

Arsenic Removal efficiency Tobacco hairy roots Tobacco seedlings Tolerance 

Notes

Acknowledgments

MAT, ALWO, and EA are members of the research career of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; Argentina). SOG has a fellowship from CONICET. We wish to thanks to PPI (SECyT-UNRC), CONICET, MINCyT Córdoba and PICTO (FONCyT-SECyT-UNRC) for financial support. The authors thank MSc. Iliana A. Martínez, MA, and her research group for language editing of the manuscript.

References

  1. Abedin M. J.; Meharg A. A. Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant Soil 243: 57–66; 2002.CrossRefGoogle Scholar
  2. Anderson L.; Walsh M. Arsenic uptake by common marsh fern Thelypteris palustris and its potential for phytoremediation. Sci. Total Environ. 379: 263–265; 2007.PubMedCrossRefGoogle Scholar
  3. APHA (American Public Health Association) Standard methods for the water and waste water. 21st Edition. Washington DC; 2005.Google Scholar
  4. Beauchamp C. O.; Fridovich I. Isozymes of SOD from wheat germ. Biochim. Biophys. Acta 317: 50–54; 1973.PubMedCrossRefGoogle Scholar
  5. Boominathan R.; Doran P. M. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol. Bioeng. 83: 158–167; 2003.PubMedCrossRefGoogle Scholar
  6. Doran P. M. Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol. Bioeng. 103: 60–76; 2009.PubMedCrossRefGoogle Scholar
  7. Eapen S.; Suseelan K. N.; Tivarekar S.; Kotwal S. A.; Mitra R. Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ. Res. 91: 127–133; 2003.PubMedCrossRefGoogle Scholar
  8. Fayiga A. O.; Ma L. Q.; Rathinasabapathi B. Effects of nutrients on arsenic accumulation by arsenic hyperaccumulator Pteris vittata L. Environ. Exp. Bot. 62: 231–237; 2008.CrossRefGoogle Scholar
  9. Flocco C.; Alvarez M.; Giulietti A. Peroxidase production in vitro by Armoracia rusticana (horseradish)-transformed root cultures: effect of elicitation on level and profile of isoenzymes. Biotechnol. Appl. Biochem. 28: 33–38; 1998.PubMedGoogle Scholar
  10. Flores H. E. Use of plant cells and organ culture in the production of biological chemicals. In: LeBaron H. M.; Mumma R. O.; Honeycutt R. C.; Duesing J. H. (eds) Biotechnology in agricultural chemistry, ACS Symp Ser 334. American Chemical Society, Washington DC, pp 66–86; 1987.CrossRefGoogle Scholar
  11. Francesconi K.; Visoottiviseth P.; Sridokchan W.; Goessler W. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos, a potential phytoremediator of arsenic-contaminated soils. Sci. Total Environ. 284: 27–35; 2002.PubMedCrossRefGoogle Scholar
  12. Glebert C.; Ros R.; De Haro A.; Walker D. J.; Pilar Bernal M.; Serrano R.; Navarro-Aviñó J. A plant genetically modified that accumulate Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun. 303: 440–445; 2003.CrossRefGoogle Scholar
  13. Grill E.; Mishra S.; Srivastava S.; Tripathi R. D. Role of phytochelatins in phytoremediation of heavy metals. In: Singh SN, Tripathi RD (eds) Environmental Bioremediation Technologies Springer, pp 101–146; 2006.Google Scholar
  14. Guillon S.; Tremouillaux-Guiller J.; Pati P. K.; Rideau M.; Gantet P. Hairy root research: recent scenario and exciting prospects. Curr. Opin. Plant Biol. 9: 341–346; 2006.PubMedCrossRefGoogle Scholar
  15. Gupta M.; Sharma P.; Sarin N. B.; Sinha A. K. Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74: 1201–1208; 2009.Google Scholar
  16. Hong S. H.; Choi S. A.; Yoon H.; Cho K. S. Screening of Cucumis sativus as a new arsenic-accumulating plant and its arsenic accumulation in hydroponic culture. Environ. Geochem. Health 33: 143–149; 2011.PubMedCrossRefGoogle Scholar
  17. Jabeen R.; Altaf A.; Muhammad I. Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot. Rev. 75: 339–364; 2009.CrossRefGoogle Scholar
  18. Lequeux H.; Hermans C.; Lutts S.; Verbruggen N. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol. Biochem. 48: 673–682; 2010.PubMedCrossRefGoogle Scholar
  19. Li C. X.; Feng S. L.; Shao Y.; Jiang L. N.; Lu X. Y.; Hou X. L. Effects of arsenic on seed germination and physiological activities of wheat seedlings. J. Environ. Sci. 19: 725–732; 2007.CrossRefGoogle Scholar
  20. Liu X.; Zhang S.; Shan X.; Zhu Y. G. Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere 61: 293–301; 2005.PubMedCrossRefGoogle Scholar
  21. López-Bucio J.; Cruz-Ramírez A.; Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6: 280–287; 2003.PubMedCrossRefGoogle Scholar
  22. Lugon-Moulin N.; Florian M.; Krauss M. R.; Ramey P. B.; Rossi L. Arsenic concentration in tobacco leaves: a study on three commercially important tobacco (Nicotiana tabacum L.) types. Water Air Soil Pollut. 192: 315–319; 2008.CrossRefGoogle Scholar
  23. Majumder A.; Jha S. Hairy roots: a promising tool for phytoremediation. In: Satyanarayana T.; Johri B. N.; Prakash A. (eds) Microorganisms in Environmental Management, Microbes and Environment. Springer, Netherlands, pp 607–629; 2012.CrossRefGoogle Scholar
  24. Marano K. M.; Naufal Z. S.; Kathman S. J.; Bodnar J. A.; Borgerding M. F.; Wilson C. L. Arsenic exposure and tobacco consumption: biomarkers and risk assessment. Regul. Toxicol. Pharmacol. 64: 225–232; 2012.PubMedCrossRefGoogle Scholar
  25. Meharg A. A.; Macnair M. R. An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L. New Phytol. 116: 29–35; 1990.CrossRefGoogle Scholar
  26. Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 15: 473–479; 1962.CrossRefGoogle Scholar
  27. Nedelkoska T. V.; Doran P. M. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol. Bioeng. 67: 607–615; 2000.PubMedCrossRefGoogle Scholar
  28. Nedelkoska T. V.; Doran P. M. Hyperaccumulation of nickel by hairy roots of Alyssum species: comparison with whole regenerated plants. Biotechnol. Prog. 17: 752–759; 2001.PubMedCrossRefGoogle Scholar
  29. Pérez-Carrera A.; Fernández Cirelli A. Arsenic and water quality challenges in South America. In: Schneier-Madanes G.; Courel M.-F. (eds) Water and sustainability in arid regions. Springer, Dortrecht Netherlands, pp 275–293; 2010.CrossRefGoogle Scholar
  30. Potters G.; Pasternak T. P.; Guisez Y.; Jansen M. A. K. Different stresses, similar morphogenic responses: integrated a plethora of pathways. Plant Cell Environ. 32: 158–169; 2009.PubMedCrossRefGoogle Scholar
  31. Rahman M. A.; Hasegawa H.; Ueda K.; Maki O. C.; Rahman M. M. Arsenic accumulation in duckweed (Spirodela polyrhiza L.): a good option for phytoremediation. Chemosphere 69: 493–499; 2007.PubMedCrossRefGoogle Scholar
  32. Robinson B.; Kimb N.; Marchetti M.; Monid C.; Schroeter L.; van den Dijssel C.; Milne G.; Clothier B. Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ. Exp. Bot. 58: 206–215; 2006.CrossRefGoogle Scholar
  33. Sato K.; Maitani T.; Yoshihira K. Uptake of arsenic by cultured hairy roots of Rubia tinctorum from liquid medium. J. Food Hyg. Soc. Jpn. 32: 414–419; 1991.CrossRefGoogle Scholar
  34. Schachtman D. P.; Shin R. Nutrient sensing and signaling: NPKS. Annu. Rev. Plant Biol. 58: 47–69; 2007.PubMedCrossRefGoogle Scholar
  35. Shalata A.; Mittova V.; Volokita M.; Guy M.; Tal M. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol. Plant. 112: 487–494; 2001.PubMedCrossRefGoogle Scholar
  36. Shri M.; Kumar S.; Chakrabarty D.; Trivedi P. K.; Mallick S.; Misra P.; Shukla D.; Mishra S.; Srivastava S.; Tripathi R. D.; Tuli R. Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol. Environ. Saf. 72: 1102–1110; 2009.PubMedCrossRefGoogle Scholar
  37. Singh N.; Ma L. Q. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformes L. Environ. Pollut. 141: 238–246; 2006.PubMedCrossRefGoogle Scholar
  38. Smedley P. L.; Nicolli H. B.; Macdonald D. M. J.; Kinniburgh D. G. Arsenic in groundwater and sediments from La Pampa province, Argentina. In: Bundschuh J.; Armienta M. A.; Birkle P.; Bhattacharya P.; Matschullat J.; Mukherjee A. B. (eds) Natural arsenic in groundwaters of Latin America. CRC Press, London, pp 35–45; 2009.Google Scholar
  39. Sosa Alderete L. G.; Talano M. A.; Ibáñez S. G.; Purro S.; Agostini E.; Milrad S. R.; Medina M. I. Establishment of transgenic tobacco hairy roots expressing basic peroxidases and its application for phenol removal. J. Biotechnol. 139: 273–279; 2009.PubMedCrossRefGoogle Scholar
  40. Talano M. A.; Wevar Oller A. L.; González P. S.; Agostini E. Hairy roots, their multiple applications and recent patents. Rec Patents Biotechnol. 6: 115–133; 2012.CrossRefGoogle Scholar
  41. Vance C. P.; Uhde-Stone C.; Allan D. L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157: 423–447; 2003.CrossRefGoogle Scholar
  42. Wang L.; Duan G. Effect of external and internal phosphate status on arsenic toxicity and accumulation in rice plantlets. J. Environ. Sci. 21: 346–351; 2009.CrossRefGoogle Scholar
  43. Wu S.; Zu Y.; Wu M. Cadmium response of the hairy root culture of the endangered species Adenophora lobophylla. Plant Sci. 160: 551–562; 2001.PubMedCrossRefGoogle Scholar
  44. Zhao F. J.; McGrath P. S.; Meharg A. A. Arsenic as a food chain contaminant: mechanism of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 61: 535–559; 2010.PubMedCrossRefGoogle Scholar
  45. Zhu Y. G.; Rosen B. P. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality? Curr. Opin. Biotechnol. 20: 220–224; 2009.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2013

Authors and Affiliations

  • Melina A. Talano
    • 1
    Email author
  • Ana L. Wevar Oller
    • 1
  • Patricia González
    • 2
  • Soledad Oliva González
    • 2
  • Elizabeth Agostini
    • 1
  1. 1.Departamento de Biología Molecular, FCEFQyNUniversidad Nacional de Río CuartoRío CuartoArgentina
  2. 2.Área de Química Analítica, Facultad de Química, Bioquímica y FarmaciaUniversidad Nacional de San LuisSan LuisArgentina

Personalised recommendations