Advertisement

Use of biotechnologies for the conservation of plant biodiversity

  • Florent EngelmannEmail author
Invited Review

Abstract

In vitro techniques are very useful for conserving plant biodiversity, including (a) genetic resources of recalcitrant seed and vegetatively propagated species, (b) rare and endangered plant species and (c) biotechnology products such as elite genotypes and genetically engineered material. Explants from recalcitrant seed and vegetatively propagated species can be efficiently collected under field conditions using in vitro techniques. In vitro culture techniques ensure the production and rapid multiplication of disease-free material. Medium-term conservation is achieved by reducing growth of plant material, thus increasing intervals between subcultures. For long-term conservation, cryopreservation (liquid nitrogen, −196°C) allows storing plant material without modification or alteration for extended periods, protected from contaminations and with limited maintenance. Slow growth storage protocols are routinely employed for a large number of species, including numerous endangered plants, from temperate and tropical origin. Cryopreservation is well advanced for vegetatively propagated species, and techniques are ready for large-scale experimentation in an increasing number of cases. Research is much less advanced for recalcitrant species due to their seed characteristics, viz., very high sensitivity to desiccation, structural complexity and heterogeneity in terms of developmental stage and water content at maturity. However, various technical approaches should be explored to develop cryopreservation techniques for a larger number of recalcitrant seed species. A range of analytical techniques are available, which allow understanding physical and biological processes taking place in explants during cryopreservation. These techniques are extremely useful to assist in the development of cryopreservation protocols. In comparison with crop species, only limited research has been performed on cryopreservation of rare and endangered species. Even though routine use of cryopreservation is still limited, an increasing number of examples where cryopreservation is used on a large scale can be found both in genebanks for crops and in botanical gardens for endangered species.

Keywords

In vitro collecting Slow growth storage Cryopreservation Germplasm conservation Crops Rare and endangered species 

References

  1. Ashmore S. Status report on the development and application of in vitro techniques for the conservation and use of plant genetic resources. International Plant Genetic Resources Institute, Rome; 1997.Google Scholar
  2. Assy-Bah B.; Engelmann F. Cryopreservation of mature embryos of coconut (Cocos nucifera L.) and subsequent regeneration of plantlets. CryoLetters 13: 117–126; 1992.Google Scholar
  3. Banerjee N.; De Langhe E. A tissue culture technique for rapid clonal propagation and storage under minimal growth conditions of Musa (banana and plantain). Plant Cell Rep 4: 351–354; 1985.CrossRefGoogle Scholar
  4. Berjak P.; Farrant J. M.; Mycock D. J.; Pammenter N. W. Homoiohydrous (recalcitrant) seeds: the enigma of their desiccation sensitivity and the state of water in axes of Landolphia kirkii Dyer. Planta 186: 249–261; 1989.Google Scholar
  5. Bunn E.; Turner S. R.; Panaia M.; Dixon K. W. The contribution of in vitro technology and cryogenic storage to conservation of indigenous plants. Aust J Bot 55: 345–355; 2007.CrossRefGoogle Scholar
  6. Chandel K. P. S.; Chaudhury R.; Radhamani J.; Malik S. K. Desiccation and freezing sensitivity in recalcitrant seeds of tea, cocoa and jackfruit. Ann Bot 76: 443–450; 1995.CrossRefGoogle Scholar
  7. Côte F. X.; Goue O.; Domergue R.; Panis B.; Jenny C. In-field behavior of banana plants (Musa AA sp.) obtained after regeneration of cryopreserved embryogenic cell suspensions. CryoLetters 21: 19–24; 2000.PubMedGoogle Scholar
  8. Cyr D. R. Cryopreservation: roles in clonal propagation and germplasm conservation of conifers. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 261–268; 2000.Google Scholar
  9. Dereuddre J.; Hassen M.; Blandin S.; Kaminski M. Resistance of alginate-coated somatic embryos of carrot (Daucus carota L.) to desiccation and freezing in liquid nitrogen: 2. Thermal analysis. CryoLetters 12: 135–148; 1991.Google Scholar
  10. Dulloo M. E.; Ebert A. W.; Dussert S.; Gotor E.; Astorga C.; Vasquez N.; Rakotomalala J. J.; Rabemiafara A.; Eira M.; Bellachew B.; Omondi C.; Engelmann F.; Anthony F.; Watts J.; Qamar Z.; Snook L. Cost efficiency of cryopreservation as a long term conservation method for coffee genetic resources. Crop Sci 49: 2123–2138; 2009.CrossRefGoogle Scholar
  11. Dumet D. Cryoconservation des massifs d’embryons somatiques de palmier à huile (Elaeis guineensis Jacq.) par déshydratation-vitrification. Etude du rôle du saccharose pendant le prétraitement. Ph.D. thesis, Université Paris 6, Paris, France; 1994Google Scholar
  12. Dumet D.; Engelmann F.; Chabrillange N.; Duval Y. Cryopreservation of oil palm (Elaeis guineensis Jacq.) somatic embryos involving a desiccation step. Plant Cell Rep 12: 352–355; 1993.CrossRefGoogle Scholar
  13. Dussert S.; Chabrillange N.; Anthony F.; Engelmann F.; Recalt C.; Hamon S. Variability in storage response within a coffee (Coffea spp.) core collection under slow growth conditions. Plant Cell Rep 16: 344–348; 1997a.Google Scholar
  14. Dussert S.; Chabrillange N.; Engelmann F.; Anthony F.; Hamon S. Cryopreservation of coffee (Coffea arabica L.) seeds: importance of the precooling temperature. CryoLetters 18: 269–276; 1997b.Google Scholar
  15. Dussert S.; Engelmann F. New determinants of coffee (Coffea arabica L.) seed tolerance to liquid nitrogen exposure. CryoLetters 27: 169–178; 2006.PubMedGoogle Scholar
  16. Dussert S.; Engelmann F.; Noirot M. Development of probabilistic tools to assist in the establishment and management of cryopreserved plant germplasm collections. CryoLetters 24: 149–160; 2003.PubMedGoogle Scholar
  17. Ellis R. E.; Hong T.; Roberts E. H. An intermediate category of seed storage behaviour? I. Coffee. J Exp Bot 41: 1167–1174; 1990.CrossRefGoogle Scholar
  18. Ellis R. H.; Hong T.; Roberts E. H.; Soetisna U. Seed storage behaviour in Elaeis guineensis. Seed Sci Res 1: 99–104; 1991.Google Scholar
  19. Engelmann F. In vitro conservation of tropical plant germplasm—a review. Euphytica 57: 227–243; 1991.CrossRefGoogle Scholar
  20. Engelmann F. Cryopreservation of embryos. In: Dattée Y.; Dumas C.; Gallais A. (eds) Reproductive biology and plant breeding. Springer, Berlin, pp 281–290; 1992.Google Scholar
  21. Engelmann F. Importance of desiccation for the cryopreservation of recalcitrant seed and vegetatively propagated species. Plant Genet Resour Newsl 112: 9–18; 1997a.Google Scholar
  22. Engelmann F. In vitro conservation methods. In: Ford-Lloyd B. V.; Newburry J. H.; Callow J. A. (eds) Biotechnology and plant genetic resources: conservation and use. CABI, Wellingford, pp 119–162; 1997b.Google Scholar
  23. Engelmann F. Management of field and in vitro germplasm collections. Proceedings of a consultation meeting—15–20 January 1996, CIAT, Cali, Colombia. International Plant Genetic Resources Institute, Rome; 1999.Google Scholar
  24. Engelmann F. Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 8–20; 2000.Google Scholar
  25. Engelmann F. Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40: 427–433; 2004.CrossRefGoogle Scholar
  26. Engelmann F.; Dumet D.; Chabrillange N.; Abdelnour-Esquivel A.; Assy-Bah B.; Dereuddre J.; Duval Y. Factors affecting the cryopreservation of coffee, coconut and oil palm embryos. Plant Genet Resour Newsl 103: 27–31; 1995.Google Scholar
  27. Engelmann F.; Gonzalez-Arnao M. T.; Wu W. J.; Escobar R. E. Development of encapsulation–dehydration. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 59–76; 2008.CrossRefGoogle Scholar
  28. Engelmann F.; Takagi H. Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba; 2000.Google Scholar
  29. Engels J. M. M.; Engelmann F. Botanic gardens and agricultural genebanks: building on complementary strengths for more effective global conservation of plant genetic resources. Proc. Fifth international botanic gardens conservation congress, Kirstenbosch, South Africa, 14–18 September; 1998.Google Scholar
  30. Fahy G. M.; MacFarlane D. R.; Angell C. A.; Meryman H. T. Vitrification as an approach to cryopreservation. Cryobiology 21: 407–426; 1984.PubMedCrossRefGoogle Scholar
  31. Fay M. F. Conservation of rare and endangered plants using in vitro methods. In Vitro Cell Dev Biol Plant 28: 1–4; 1992.Google Scholar
  32. Florin B.; Brulard E.; Lepage B. Establishment of a cryopreserved coffee germplasm bank. In: Abstracts Cryo’99, World Congress of the Society for Cryobiology, Marseilles, France, 167, 12–15 July; 1999.Google Scholar
  33. Forsline P. L.; McFerson J. R.; Lamboy W. F.; Towill L. E. Development of base and active collections of Malus germplasm with cryopreserved dormant buds. Acta Hort 484: 75–78; 1999.Google Scholar
  34. Ganeshan S.; Rajashekaran P. E. Current status of pollen cryopreservation research: relevance to tropical agriculture. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 360–365; 2000.Google Scholar
  35. George E. F. Plant propagation by tissue culture. Part 2—in practice. 2nd ed. Exegetics, Edington; 1996.Google Scholar
  36. Golmirzaie A.; Panta A. Advances in potato cryopreservation at the International Potato Center, Peru. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 250–254; 2000.Google Scholar
  37. Gonzalez-Arnao M. T. Desarollo de una tecnica para la crioconservacion de meristemos apicales de caña de azucar. Tesis presentada en opcion al grado de Doctor en ciencias tecnicas. Centro Nacional de Investigaciones Cientificas, La Habana, Cuba; 1996Google Scholar
  38. Gonzalez-Arnao M. T.; Engelmann F. Cryopreservation of plant germplasm using the encapsulation–dehydration technique: review and case study on sugarcane. CryoLetters 27: 155–168; 2006.PubMedGoogle Scholar
  39. Gonzalez-Arnao M. T.; Panta A.; Roca W. M.; Escobar R. H.; Engelmann F. Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell Tiss Org Cult 92: 1–13; 2008.CrossRefGoogle Scholar
  40. Gonzalez-Benito M. E.; Perez C. Cryopreservation of nodal explants of an endangered plant species (Centaurium rigualii Esteve) using the encapsulation–dehydration method. Biodivers Conserv 6: 583–590; 1997.CrossRefGoogle Scholar
  41. Guarino L.; Rao R.; Reid R. Collecting plant genetic diversity, technical guidelines. CAB International, Wallingford; 1995.Google Scholar
  42. Hamilton K. N.; Ashmore S. E.; Pritchard H. W. Thermal analysis and cryopreservation of seeds of Australian wild Citrus species (Rutaceae): Citrus australasica, C. inodora and C. garrawayi. CryoLetters 30: 268–279; 2009.PubMedGoogle Scholar
  43. Harvengt L.; Meier-Dinkel A.; Dumas E.; Collin E. Establishment of a cryopreserved gene bank of European elms. Can J Forest Res 34: 43–55; 2004.CrossRefGoogle Scholar
  44. Hirano T.; Ishikawa K.; Mii M. Advances in orchid cryopreservation. In: da Silva JA Teixeira (ed) Floriculture, ornamental and plant biotechnology, advances and topical issues, vol. II. Global Science Books, Ikenobe, pp 410–414; 2006.Google Scholar
  45. Hummer K. E.; Reed B. M. Establishment and operation of a temperate clonal field genebank. In: Engelmann F. (ed) Management of field and in vitro germplasm collections. Proceedings of a consultation meeting—15–20 January, 1996, CIAT, Cali, Colombia. International Plant Genetic Resources Institute, Rome, pp 29–31; 2000.Google Scholar
  46. IUCN. IUCN Red List of Threatened Species. www.iucnredlist.org; 2004.
  47. Kartha K. K.; Engelmann F. Cryopreservation and germplasm storage. In: Vasil I. K.; Thorpe T. A. (eds) Plant cell and tissue culture. Kluwer, Dordrecht, pp 195–230; 1994.Google Scholar
  48. Keller E. R. J.; Grübe M.; Senula A. Cryopreservation in the Gatersleben genebank—state of the art in potato, garlic and mint. Mem. Congresso Internacional Biotecnología y Agricultura (Bioveg 2005), Centro de Bioplantas, Ciego de Avila, Cuba; 2005.Google Scholar
  49. Keller E. R. J.; Senula A.; Leunufna S.; Grübe M. Slow growth storage and cryopreservation—tools to facilitate germplasm maintenance of vegetatively propagated crops in living plant collections. Int Refrig J 29: 411–417; 2006.CrossRefGoogle Scholar
  50. Kim H. H.; Shin D. J.; No N. Y.; Yoon M. K.; Choi H. S.; Lee J. S.; Engelmann F. Cryopreservation of garlic germplasm collections using the droplet–vitrification technique. In: Abst. 1st international symposium on cryopreservation in horticultural species, Leuven, Belgium, 39, 5–8 April; 2009.Google Scholar
  51. Konan E. K.; Durand-Gasselin T.; Koadio Y. J.; Niamké A. C.; Dumet D.; Duval Y.; Rival A.; Engelmann F. Field development of oil palms (Elaeis guineensis Jacq.) originating from cryopreserved stabilized polyembryonic cultures (SPCs). CryoLetters 28: 377–386; 2007.PubMedGoogle Scholar
  52. Lambardi M.; Halmagyi A.; Benelli C.; Carlo A.; de Vettori C. Seed cryopreservation for conservation of ancient Citrus germplasm. Adv Hortic Sci 21: 198–202; 2007.Google Scholar
  53. Li B. L.; Zhang Y. L.; Wang H.; Song C. H.; Liu Y. Pollen cryo-bank establishment and application of traditional Chinese flowers. In: Abst. CRYO ’09. Annual meeting of the Society for Cryobiology, Tsukuba, Japan, 108, 21–26 July; 2009.Google Scholar
  54. Malik S. K.; Chaudhury R. The cryopreservation of embryonic axes of two wild and endangered Citrus species. Plant Genet Res: Charact Utiliz 4: 204–209; 2006.Google Scholar
  55. Mandal B. B. Cryopreservation research in India: current status and future perspectives. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 282–286; 2000.Google Scholar
  56. Maneerattanarungroj P.; Bunnag S.; Monthatong M. In vitro conservation of Cleisostoma areitinum (Rchb. f.) Garay, rare Thai orchid species by an encapsulation–dehydration method. Asian J Plant Sci 6: 1235–1240; 2007.CrossRefGoogle Scholar
  57. Mazur P. Freezing of living cells: mechanisms and applications. Amer J Physiol 247(Cell Physiol 16): C125–C142; 1984.PubMedGoogle Scholar
  58. Meryman H. T.; Williams R. J.; Douglas M. S. J. Freezing injury from solution effects and its prevention by natural or artificial cryoprotection. Cryobiology 14: 287–302; 1977.PubMedCrossRefGoogle Scholar
  59. Mix-Wagner G.; Schumacher H. M.; Cross R. J. Recovery of potato apices after several years of storage in liquid nitrogen. CryoLetters 24: 33–41; 2003.PubMedGoogle Scholar
  60. Niino T. Cryopreservation of germplasm of mulberry. In: Bajaj Y. P. S. (ed) Biotechnology in agriculture and forestry vol 32. Cryopreservation of plant germplasm I. Springer, Berlin, pp 102–113; 1995.Google Scholar
  61. Niino T.; Sakai A.; Yakuwa H.; Nojiri K. Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tiss Org Cult 28: 261–266; 1992.CrossRefGoogle Scholar
  62. Nikishina T. V.; Popova E. V.; Vakhrameeva M. G.; Varlygina T. I.; Kolomeitseva G. L.; Burov A. V.; Popovich E. A.; Shirokov A. I.; Shumilov V.; Yu V.; Popov A. S. Cryopreservation of seeds and protocorms of rare temperate orchids. Russ J Plant Physiol 54: 121–127; 2007.CrossRefGoogle Scholar
  63. Niu Y. L.; Luo Z. R.; Zhang Y. F. Studies on cryopreservation of two Diospyros spp. germplasm by modified droplet vitrification. J Wuhan Bot Res 27: 451–454; 2009.Google Scholar
  64. Normah M. N.; Makeen A. M. Cryopreservation of excised embryos and embryonic axes. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 211–240; 2008.CrossRefGoogle Scholar
  65. Panis B.; Strosse H.; Van den Henda S.; Swennen R. Sucrose preculture to simplify cryopreservation of banana meristem cultures. CryoLetters 23: 375–384; 2002.PubMedGoogle Scholar
  66. Panis B.; Van den Houwe I.; Piette B.; Swennen R. Cryopreservation of the banana germplasm collection at the ITC (INIBAP Transit Centre). In: Proc. 1st Meeting of COST 871 Working Group 2: Technology, application and validation of plant cryopreservation, Florence, Italy, 34–35, 10–13 May; 2007.Google Scholar
  67. Pence V. C. Cryopreservation of seeds of Ohio native plants and related species. Seed Sci Technol 19: 235–251; 1991.Google Scholar
  68. Pence V. C. Cryopreservation of recalcitrant seeds. In: Bajaj Y. P. S. (ed) Biotechnology in agriculture and forestry vol 32. Cryopreservation of plant germplasm I. Springer, Berlin, pp 29–52; 1995.Google Scholar
  69. Pence V. C. Cryopreservation of bryophytes and ferns. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 117–140; 2008.CrossRefGoogle Scholar
  70. Pence V. C.; Clark J. R.; Plair B. L. Wild and endangered species. In: Pence V. C.; Sandoval J.; Villalobos V.; Engelmann F. (eds) In vitro collecting techniques for germplasm conservation. IPGRI technical bulletin N7. IPGRI, Rome, pp 76–82; 2002a.Google Scholar
  71. Pence V. C.; Sandoval J.; Villalobos V.; Engelmann F. In vitro collecting techniques for germplasm conservation. IPGRI technical bulletin N 7. IPGRI, Rome; 2002b.Google Scholar
  72. Ramsay M. M.; Jackson A. D.; Porley R. D. A pilot study for the ex situ conservation of UK bryophytes. In: BGCI (ed) Eurogard 2000—II European botanic garden congress. EBGC, Las Palmas de Gran Canaria, pp 52–57; 2000.Google Scholar
  73. Razdan M. K.; Cocking E. C. Conservation of plant genetic resources in vitro. Volume 1: general aspects. Science, Enfield; 1997.Google Scholar
  74. Reed B. M. Plant cryopreservation: a practical guide. Springer, Berlin; 2008.CrossRefGoogle Scholar
  75. Reed B. M.; DeNoma J.; Chang Y. Application of cryopreservation protocols at a clonal genebank. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 246–249; 2000.Google Scholar
  76. Reed B. M.; Engelmann F.; Dulloo M. E.; Engels J. M. M. Technical guidelines for the management of field and in vitro germplasm collections. Handbook for Genebanks N 7. IPGRI/SGRP, Rome; 2004.Google Scholar
  77. Reed B. M.; Uchendu E. Controlled rate cooling. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 77–92; 2008.CrossRefGoogle Scholar
  78. Roberts H. F. Predicting the viability of seeds. Seed Sci Technol 1: 499–514; 1973.Google Scholar
  79. Roca W. M.; Reyes R.; Beltran J. Effect of various factors on minimal growth in tissue culture storage of cassava germplasm. In: Proc. sixth symposium of the international society for tropical root crops. Lima, Peru, 441–446, 21–26 February; 1984.Google Scholar
  80. Sakai A.; Engelmann F. Vitrification, encapsulation–vitrification and droplet–vitrification: a review. CryoLetters 28: 151–172; 2007.PubMedGoogle Scholar
  81. Sakai A.; Hirai D.; Niino T. Development of PVS-based vitrification and encapsulation–vitrification protocols. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 33–58; 2008.CrossRefGoogle Scholar
  82. Sakai A.; Kobayashi S.; Oiyama I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9: 30–33; 1990.CrossRefGoogle Scholar
  83. Sarasan V.; Cripps R.; Ramsay M. M.; Atherton C.; McMichen M.; Prendergast G.; Rowntree J. K. Conservation in vitro of threatened plants—progress in the past decade. In Vitro Cell Dev Biol—Plant 42: 206–214; 2006.CrossRefGoogle Scholar
  84. Spencer M. The challenges of developing cryopreservation strategies to suit the requirements of a large industrial in vitro plant cell collection. In: Abstracts Cryo’99, World Congress of Cryobiology, Marseilles, France, 245, 12–15 July; 1999.Google Scholar
  85. Tanaka D.; Niino T.; Tsuchiya Y.; Shirata K.; Uemura M. Cryopreservation of shoot tips of endangered Hayachine-usuyukiso (Leontopodium hayachinense (Takeda) Hara et Kitam.) using a vitrification protocol. Plant Genet Res Charact Util 6: 164–166; 2009.Google Scholar
  86. Touchell D. H.; Dixon K. W. Cryopreservation of seed of Western Australia native species. Biodivers Conserv 2: 594–602; 1993.CrossRefGoogle Scholar
  87. Touchell D. H.; Dixon K. W. Cryopreservation for seedbanking of Australian species. Ann Bot 40: 541–546; 1994.CrossRefGoogle Scholar
  88. Towill L. E.; Walters C. Cryopreservation of pollen. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 115–129; 2000.Google Scholar
  89. Turner S. R.; Senaratna T.; Bunn E.; Tan B.; Dixon K. W.; Touchell D. H. Cryopreservation of shoot tips from six endangered Australian species using a modified vitrification protocol. Ann Bot 87: 371–378; 2001.CrossRefGoogle Scholar
  90. UNEP. Global biodiversity assessment. Cambridge University Press, Cambridge; 1995.Google Scholar
  91. Uragami A.; Sakai A.; Magai M. Cryopreservation of dried axillary buds from plantlets of Asparagus officinalis L. grown in vitro. Plant Cell Rep 9: 328–331; 1990.CrossRefGoogle Scholar
  92. Wang Q.; Panis B.; Engelmann F.; Lambardi M.; Valkonen J. P. T. Elimination of plant pathogens by cryotherapy of shoot tips: a review. Ann Appl Biol 154: http://www3.interscience.wiley.com/journal/119879031/issue; 2008.
  93. Wesley-Smith J.; Vertucci C. W.; Berjak P.; Pammenter N. W.; Crane J. Cryopreservation of desiccation-sensitive axes of Camellia sinensis in relation to dehydration, freezing rate and the thermal properties of tissue water. J Plant Physiol 140: 596–604; 1992.Google Scholar
  94. Withers L. A. In vitro methods for germplasm collecting in the field. FAO/IBPGR Plant Genet Resour Newsl 69: 2–6; 1987.Google Scholar
  95. Withers L. A. Collecting in vitro for genetic resources conservation. In: Guarino L.; Rao R.; Reid R. (eds) Collecting plant genetic diversity. CAB International, Wallingford, pp 511–515; 1995.Google Scholar
  96. Withers L. A.; Engelmann F. In vitro conservation of plant genetic resources. In: Altman A. (ed) Biotechnology in agriculture. Marcel Dekker, New York, pp 57–88; 1998.Google Scholar
  97. Yoon J. W.; Kim H. H.; Cho E. G.; Ko H. C.; Hwang H. S.; Park Y. E.; Engelmann F. Cryopreservation of cultivated and wild potato varieties by droplet vitrification procedure. Acta Hortic 760: 203–208; 2007.Google Scholar

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  1. 1.IRD, UMR DIAPCMontpellier cedex 5France
  2. 2.Bioversity InternationalMaccarese (Fiumicino)Italy

Personalised recommendations