In vitro conservation of European bryophytes

  • Jennifer K RowntreeEmail author
  • Silvia Pressel
  • Margaret M Ramsay
  • Aneta Sabovljevic
  • Marko Sabovljevic
Invited Review


The use of in vitro techniques for conservation has been rising steadily since their inclusion in The Convention on Biological Diversity and The Global Strategy for Plant Conservation. Unfortunately, bryophytes are often overlooked in conservation initiatives, but they are important in a number of large-scale ecosystem processes, i.e. nutrient, water and carbon cycling. There is a long history of the use of tissue culture in cultivating bryophytes, and many species respond well to in vitro techniques. For 6 yr (2000–2006), The Royal Botanic Gardens, Kew and the UK statutory conservation agencies supported a project for the ex situ conservation of bryophytes. Living and cryopreserved collections of UK threatened species were successfully established and the cryopreserved collection continues to be maintained. Other in vitro conservation collections are maintained over Europe, at botanic gardens, museums and by individual university researchers, but there is no coherent European collection of bryophytes for conservation, or standardisation of techniques. A major issue for many in vitro collections is the maintenance of within species genetic diversity. Such diversity is considered to be important, as it is the basis by which populations of species can adapt to new conditions and evolve. We are proposing to establish a European network for in vitro conservation of bryophytes. We envisage that this will include living collections, cryopreserved collections and spore collections. Conservation of genetic diversity would be a priority and the collections would provide a valuable resource for conservation initiatives and support research into rare and threatened species.


Bryophyte Tissue culture Cryopreservation Ex situ conservation European collections 



We thank Noeleen Smyth and Neil Lockhart for information on the Irish collections and their proposed designations, Zofia Sweykowska-Kulinska for information on collections held at the Adam Mickiewicz University, Poland, Kristian Hassel for information on the collection held by the Cold Gene Project, Trondheim, Norway. A. S. and M. S. acknowledge the Serbian Ministry of Science for support on grants: 143015 and 143031. We thank an anonymous reviewer from comments on a draft of this manuscript.


  1. Amos W.; Harwood J. Factors affecting levels of genetic diversity in natural populations. Philos T Roy Soc B 353: 177–186; 1998.CrossRefGoogle Scholar
  2. Aronen T. S.; Krajnakova J.; Haggman H. M.; Ryynanen L. A. Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci 142: 163–172; 1999.CrossRefGoogle Scholar
  3. Basile D. V.; Basile M. R. Procedures used for the axenic culture and experimental treatment of bryophytes. In: Glime J. M. (ed) Methods in Bryology. Proceedings of the bryological methods workshop, Mainz. The Hattori Botanical Laboratory, Japan, pp 1–16; 1988.Google Scholar
  4. Beckett R. P.; Csintalan Z.; Tuba Z. ABA treatment increases both the desiccation tolerance of photosynthesis, and nonphotochemical quenching in the moss Atrichum undulatum. Plant Ecol 151: 65–71; 2000.CrossRefGoogle Scholar
  5. Bengtsson B. O.; Cronberg N. The effective size of bryophyte populations. J Theor Biol 258: 121–126; 2009.PubMedCrossRefGoogle Scholar
  6. Benson E. E. Cryopreservation. In: Benson E. E. (ed) Plant conservation biotechnology. Taylor & Francis Ltd, London, pp 83–95; 1999.Google Scholar
  7. Bijelovic A.; Sabovljevic M.; Grubisic D.; Konjevic R. Phytohormone influence on the morphogenesis of two mosses (Bryum argenteum Hedw. and Atrichum undulatum (Hedw.) P. Beauv.). Israel J Plant Sci 52: 31–36; 2004.CrossRefGoogle Scholar
  8. Bopp M.; Werner O. Abscisic acid and desiccation tolerance in mosses. Bot Acta 106: 103–106; 1993.Google Scholar
  9. Bortoluzzi E.; Epron D.; Siegenthaler A.; Gilbert D.; Buttler A. Carbon balance of a European mountain bog at contrasting stages of regeneration. New Phytol 172: 708–718; 2006.PubMedCrossRefGoogle Scholar
  10. Bunn E.; Turner S.; Panaia M.; Dixon K. W. The contribution of in vitro technology and cryogenic storage to conservation of indigenous plants. Aust J Bot 55: 345–355; 2007.CrossRefGoogle Scholar
  11. Burch J.; Wilkinson T. Cryopreservation of protonemata of Ditrichum cornubicum (Paton) comparing the effectiveness of four cryoprotectant pretreatments. Cryoletters 23: 197–208; 2002.PubMedGoogle Scholar
  12. Chopra R. N.; Sood S. In vitro studies on the reproductive biology of Riccia crystallina. Bryologist 76: 278–285; 1973.CrossRefGoogle Scholar
  13. Christianson M. L. A simple protocol for cryopreservation of mosses. Bryologist 101: 32–35; 1998.Google Scholar
  14. Cornelissen, J. H. C.; Lang, S. I.; Soudzilovskaia, N. A.; During, H. J. Comparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistry. In: (eds) 90th Annual Meeting of the Ecological-Society-of-America/9th International Congress of Ecology Montreal, Canada, 2005.Google Scholar
  15. Costa J. L.; Paulsrud P.; Rikkinen J.; Lindblad P. Genetic diversity of Nostoc symbionts endophytically associated with two bryophyte species. Appl Environ Microb 67: 4393–4396; 2001.CrossRefGoogle Scholar
  16. Council of Europe Convention on the conservation of European wildlife and natural habitats - European Treaty Series - No. 104. Bern, 19.IX.1979 1982Google Scholar
  17. Cove D. J.; Ashton N. W. Growth regulation and development in Physcomitrella patens - an insight into growth regulation and development of bryophytes. Bot J Linn Soc 98: 247–252; 1988.CrossRefGoogle Scholar
  18. Coxson D. S. Nutrient release from epiphytic bryophytes in tropical motane rain-forest (Guadeloupe). Can J Bot 69: 2122–2129; 1991.CrossRefGoogle Scholar
  19. Davey M. L.; Currah R. S. Interactions between mosses (Bryophyta) and fungi. Can J Bot 84: 1509–1519; 2006.CrossRefGoogle Scholar
  20. Direktoratet for naturforvalning. Nasjonal rødliste for truete arter 1998. DN-rapport 1999-3; 1999.Google Scholar
  21. Duckett J. G.; Burch J.; Fletcher P. W.; Matcham H. W.; Read D. J.; Russell A. J.; Pressel S. In vitro cultivation of bryophytes: a review of practicalities, problems, progress and promise. J Bryol 26: 3–20; 2004.CrossRefGoogle Scholar
  22. ECCB Red data book of European bryophytes. 1995.Google Scholar
  23. Eppley S. M.; Taylor P. T.; Jesson L. K. Self-fertilization in mosses: a comparison of heterozygote deficiency between species with combined versus separate sexes. Heredity 98: 38–44; 2007.PubMedCrossRefGoogle Scholar
  24. Frankham R. Genetics and extinction. Biol Conserv 126: 131–140; 2005.CrossRefGoogle Scholar
  25. Frankham R.; Ballou J. D.; Briscoe D. A. Introduction to conservation genetics. Cambridge University Press, Cambridge, UK; 2002.Google Scholar
  26. Furness S. B.; Grime J. P. Growth-Rate and Temperature Responses in Bryophytes.2. A Comparative-Study of Species of Contrasted Ecology. J Ecol 70: 525–536; 1982.CrossRefGoogle Scholar
  27. Gautier, C. Seed bank of threatened plants in the ’Conservatoire Botanique National de Brest’ (France). In: Robbrecht E, Bogaerts A (eds) 3 rd European Botanic Gardens Congress/2nd European Botanic Gardens Education Congress Belgium, 2003.Google Scholar
  28. Grundmann M.; Ansell S. W.; Russell S. J.; Koch M. A.; Vogel J. C. Genetic structure of the widespread and common Mediterranean bryophyte Pleurochaete squarrosa (Brid.) Lindb. (Pottiaceae) - evidence from nuclear and plastidic DNA sequence variation and allozymes. Mol Ecol 16: 709–722; 2007.PubMedCrossRefGoogle Scholar
  29. Guerrant Jr. E. O. Ex situ conservation and the berry botanic garden. In: Kaye T. N. (ed) Conservation and management of native plants and fungi. Proceedings of an Oregon conference on the conservation and management of native plants, bryophytes, and fungi. Native Plant Society of Oregon & OSU Bookstore Printing, Corvallis, Oregon, USA; 1997.Google Scholar
  30. Guerrant Jr. E. O.; Fielder P. L.; Havens K.; Maunder M. Revised genetic sampling guidelines for conservation collections of rare and endangered plants. In: Guerrant Jr. E. O.; Havens K.; Maunder M. (eds) Ex situ plant conservation - supporting species survival in the wild. Island Press, Washington DC, USA; 2004.Google Scholar
  31. Hohe A.; Decker E. L.; Gorr G.; Schween G.; Reski R. Tight control of growth and cell differentiation in photoautotrophically growing moss (Physcomitrella patens) bioreactor cultures. Plant Cell Rep 20: 1135–1140; 2002a.CrossRefGoogle Scholar
  32. Hohe A.; Rensing S. A.; Mildner M.; Lang D.; Reski R. Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens. Plant Biology 4: 595–602; 2002b.CrossRefGoogle Scholar
  33. Hohe A.; Reski R. Optimisation of a bioreactor culture of the moss Physcomitrella patens for mass production of protoplasts. Plant Sci 163: 69–74; 2002.CrossRefGoogle Scholar
  34. Kowalczyk A.; Przywara L.; Kuta E. In vitro culture of liverworts. Acta Biol Cracov Bot 39: 27–33; 1997.Google Scholar
  35. Kozai T. Photoautotrophic Micropropagation. In Vitro Cellular & Developmental Biology Plant 27P: 47–51; 1991.CrossRefGoogle Scholar
  36. Kubinská A.; Janovicová K.; Peciar V. The list of extinct, missing and threatened bryophytes (Bryophyta) of Slovakia (1st version). Biol Bratislava 51:373–380; 1996.Google Scholar
  37. Lal M. The culture of bryophytes including apogamy, apospory, parthenogenesis and protoplasts. In: Dyer A. F.; Duckett J. G. (eds) The experimental biology of bryophytes. Academic, London, pp 97–115; 1984.Google Scholar
  38. Lockwood D. R.; Richards C. M.; Volk G. M. Probabilistic models for collecting genetic diversity: Comparisons, caveats, and limitations. Crop Sci 47: 861–868; 2007.CrossRefGoogle Scholar
  39. Mallon R.; Barros P.; Luzardo A.; Gonzalez M. L. Encapsulation of moss buds: an efficient method for the in vitro conservation and regeneration of the endangered moss Splachnum ampullaceum. Plant Cell Tiss Org 88: 41–49; 2007.CrossRefGoogle Scholar
  40. Maunder M.; Guerrant Jr. E. O.; Havens K.; Dixon K. Realizing the full potential of ex situ contributions to global plant conservation. In: Guerrant Jr. E. O.; Havens K.; Maunder M. (eds) Ex situ plant conservation - supporting species survival in the wild. Island Press, Washington, DC, pp 389–418; 2004.Google Scholar
  41. Mayaba N.; Beckett R. P.; Csintalan Z.; Tuba Z. ABA increases the desiccation tolerance of photosynthesis in the afromontane understorey moss Atrichum androgynum. Ann J Bot 88: 1093–1100; 2001.CrossRefGoogle Scholar
  42. Melosik I.; Såstad S. M. In vitro propagation of selected Sphagnum species (section Subsecunda). Lindbergia 30: 21–31; 2005.Google Scholar
  43. Monroe J. H. Some factors evoking formation of sex organs in Funaria. Bryologist 68: 337–339; 1965.Google Scholar
  44. Nakosteen P. C.; Hughes K. W. Sexual life cycle of three species of Funariaceae in culture. Bryologist 81: 307–314; 1978.CrossRefGoogle Scholar
  45. O’Neill K. P. Role of bryophyte-dominated ecosystems in the global carbon budget. In: Shaw A. J.; Goffinet B. (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 344–368; 2000.Google Scholar
  46. Oliver M. J.; Tuba Z.; Mishler B. D. The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151: 85–100; 2000a.CrossRefGoogle Scholar
  47. Oliver M. J.; Velten J.; Wood A. J. Bryophytes as experimental models for the study of environmental stress tolerance: Tortula ruralis and desiccation-tolerance in mosses. Plant Ecol 151: 73–84; 2000b.CrossRefGoogle Scholar
  48. Pence V. C. Cryopreservation of bryophytes: the effects of abscisic acid and encapsulation dehydration. Bryologist 101: 278–281; 1998.Google Scholar
  49. Pocs T. The epiphytic biomass and its effect on the water-balance of 2 rain-forest types in the Uluguru mountains (Tanzania, East-Africa). Acta Bot Hung 26: 143–167; 1980.Google Scholar
  50. Proctor M. Patterns of desiccation tolerance and recovery in bryophytes. Plant Growth Regul 35: 147–156; 2001.CrossRefGoogle Scholar
  51. Pypker T. G.; Unsworth M. H.; Bond B. J. The role of epiphytes in rainfall interception by forests in the Pacific Northwest. II. Field measurements at the branch and canopy scale. Can J Forest Res 36: 819–832; 2006a.CrossRefGoogle Scholar
  52. Pypker T. G.; Unsworth M. H.; Bond B. J. The role of epiphytes in rainfall interception by forests in the Pacific Northwest. I. Laboratory measurements of water storage. Can J Forest Res 36: 809–818; 2006b.CrossRefGoogle Scholar
  53. Quintanilla L. G.; Amigo J.; Pangua E.; Pajaron S. Effect of storage method on spore viability in five globally threatened fern species. Ann J Bot 90: 461–467; 2002.CrossRefGoogle Scholar
  54. Ramsay M. M.; Burch J. Ex situ techniques in support of UK bryophyte conservation. Novitates Botanicae ex Universitatis Carolinae Pragensis 15: 27–33; 2001.Google Scholar
  55. Richards C. M.; Antolin M. F.; Reilley A.; Poole J.; Walters C. Capturing genetic diversity of wild populations for ex situ conservation: Texas wild rice (Zizania texana) as a model. Genet Resour Crop Ev 54: 837–848; 2007.CrossRefGoogle Scholar
  56. Rowntree J. K. Development of novel methods for the initiation of in vitro bryophyte cultures for conservation. Plant Cell Tiss Org 87: 191–201; 2006.CrossRefGoogle Scholar
  57. Rowntree J. K.; Cowan R. S.; Leggett M.; Ramsay M. M.; Fay M. F. Which moss is which? Identification of the threatened moss Orthodontium gracile using molecular and morphological techniques. Conserv Genetics 11: 1033–1042; 2010.CrossRefGoogle Scholar
  58. Rowntree J. K.; Ramsay M. M. How bryophytes came out of the cold: successful cryopreservation of threatened species. Biodiv Cons 18: 1413–1420; 2009.CrossRefGoogle Scholar
  59. Sabovljevic A.; Sabovljevic M.; Grubisic D.; Konjevic R. The effect of sugars on development of two moss species (Bryum argenteum and Atrichum undulatum) during in vitro culture. Belg J Bot 138: 79–84; 2005.Google Scholar
  60. Sabovljevic A.; Sabovljevic M.; Jockovic N. In vitro culture and secondary metabolite isolation in bryophytes. In: Mohan J. S.; Saxena P. K. (eds) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. Humana Press, Springer Science, pp 117–128; 2009.CrossRefGoogle Scholar
  61. Sabovljevic M.; Bijelovic A.; Dragicevic I. In vitro culture of mosses: Aloina aloides (K.F. Schultz) Kindb., Brachythecium velutinum (Hedw.) B.S.G., Ceratodon purpureus (Hedw.) Brid., Eurhynchium praelongum (Hedw.) B.S.G. and Grimmia pulvinata (Hedw.) Sm. Turk J Biol 27: 441–446; 2003.Google Scholar
  62. Sarasan V.; Cripps R.; Ramsay M. M.; Atherton C.; McMichen M.; Prendergast G.; Rowntree J. K. Conservation in vitro of threatened plants - progress in the last decade. In Vitro Cell Dev Pl 42: 206–214; 2006.CrossRefGoogle Scholar
  63. Schnyder N.; Bergamini A.; Hofman H.; Müller N.; Schubiger-Bossard C.; Urmi E. Rote Liste der gefährdeten Arten der Schweiz: Moose. Bundesamt für Umwelt BAFU, Bern; 2004.Google Scholar
  64. Schoen D. J.; Brown A. H. D. The conservation of wild plant species in seed banks. Bioscience 51: 960–966; 2001.CrossRefGoogle Scholar
  65. Schulte J.; Reski R. High throughput cryopreservation of 140, 000 Physcomitrella patens mutants. Plant Biology 6: 119–127; 2004.PubMedCrossRefGoogle Scholar
  66. Schumaker K. S.; Dietrich M. A. Hormone-induced signaling during moss development. Ann Rev Plant Phys 49: 501–523; 1998.CrossRefGoogle Scholar
  67. Schussler A. Glomus claroideum forms an arbuscular mycorrhiza-like symbiosis with the hornwort Anthoceros punctatus. Mycorrhiza 10: 15–21; 2000.CrossRefGoogle Scholar
  68. Sergio C.; Casas C.; Brugues M.; Cros R. M. Lista Vermelha dos Briófitos da Península Ibérica. ICN, Lisboa; 1994.Google Scholar
  69. Shaw A. J.; McDaniel S. F.; Werner O.; Ros R. M. New frontiers in bryology and lichenology - Phylogeography and phylodemography. Bryologist 105: 373–383; 2002.CrossRefGoogle Scholar
  70. Simabukuro E. A.; Dyer A. F.; Felippe G. M. The effect of sterilization and storage conditions on the viability of the spores of Cyathea delgadii. American Fern Journal 88: 72–80; 1998.CrossRefGoogle Scholar
  71. Smith A. J. E. The moss flora of Britain & Ireland. Cambridge University Press, Cambridge, U. K.; 2004.CrossRefGoogle Scholar
  72. Stenøien H. K.; Såstad S. M. Genetic variability in bryophytes: does mating system really matter? J Bryol 23: 313–318; 2001.Google Scholar
  73. Sundberg S.; Rydin H. Experimental evidence for a persistent spore bank in Sphagnum. New Phytol 148: 105–116; 2000.CrossRefGoogle Scholar
  74. Takami S.; Nishikawa S.; Takio S.; Hino S. Photoautotrophic growth in suspension-culture of cells from the moss, Barbula unguiculata. Physiol Plantarum 73: 227–231; 1988.CrossRefGoogle Scholar
  75. Tan B. C.; Pocs T. Biogeography and conservation of bryophytes. In: Shaw A. J.; Goffinet B. (eds) Bryophyte Biology. Cambridge University Press, Cambridge, pp 403–448; 2000.Google Scholar
  76. Turner S.; Krauss S. L.; Bunn E.; Senaratna T.; Dixon K.; Tan B.; Touchell D. Genetic fidelity and viability of Anigozanthos viridis following tissue culture, cold storage and cryopreservation. Plant Sci 161: 1099–1106; 2001.CrossRefGoogle Scholar
  77. UK Biodiversity Group Tranche 2 Action Plans. Volume III - plants and fungi. UK Biodiversity Group & English Nature, Peterborough; 1999.Google Scholar
  78. UNEP Convention on Biological Diversity (CBD). Text and Annexes. 1992.Google Scholar
  79. UNEP Global Strategy for Plant Conservation. Decision VI/9:2002.Google Scholar
  80. van Slageren M. W. The Millennium Seed Bank: building partnerships in arid regions for the conservation of wild species. J Arid Environ 54: 195–201; 2003.CrossRefGoogle Scholar
  81. Walters C.; Wheeler L.; Stanwood P. C. Longevity of cryogenically stored seeds. Cryobiology 48: 229–244; 2004.PubMedCrossRefGoogle Scholar
  82. Walters C.; Wheeler L. M.; Grotenhuis J. M. Longevity of seeds stored in a genebank: species characteristics. Seed Sci Res 15: 1–20; 2005.CrossRefGoogle Scholar
  83. Werner O.; Espin R. M. R.; Bopp M.; Atzorn R. Abscisic acid induced drought tolerance in Funaria hygrometrica Hedw. Planta 186: 99–103; 1991.CrossRefGoogle Scholar
  84. World Resources Institute; Millennium Ecosystem Assessment Ecosystems and their services. In: (eds) Ecosystems and human well-being - a framework for assessment. Island Press, Washington DC, pp 49–70; 2003Google Scholar

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  • Jennifer K Rowntree
    • 1
    • 5
    Email author
  • Silvia Pressel
    • 2
  • Margaret M Ramsay
    • 3
  • Aneta Sabovljevic
    • 4
  • Marko Sabovljevic
    • 4
  1. 1.Faculty of Life SciencesUniversity of ManchesterManchesterUK
  2. 2.Natural History MuseumLondonUK
  3. 3.Biotechnology and Conservation Unit, Royal Botanic GardensKew, RichmondUK
  4. 4.Institute of Botany and Garden, Faculty of BiologyUniversity of BelgradeBelgradeSerbia
  5. 5.Department of BiologyUniversity of YorkYorkUK

Personalised recommendations