In Vitro Cellular & Developmental Biology - Plant

, Volume 47, Issue 1, pp 176–187 | Cite as

Evaluating costs for the in vitro propagation and preservation of endangered plants

Invited Review

Abstract

In vitro methods provide opportunities for propagating and preserving endangered plant species when seed-based methods are not adequate. Such species include those that produce few or no seeds, as well as species with recalcitrant seeds. Tissue culture propagation methods can be used to produce such plants for reintroduction, research, education, display, and commerce. They can also be the basis for tissue banking as a way to preserve genetic diversity when seeds cannot be banked. With some recalcitrant species, embryo banking, a method which also utilizes in vitro culture for recovery germination, is possible. The number of endangered species that will require in vitro methods is estimated to be at least 5,000 worldwide. Further information is needed to identify these species, and the ongoing collection of information into databases on endangered species and recalcitrant species will help provide this. The costs of these methods are higher than for traditional propagation and preservation, but they may be necessary for species under higher threat. The multiplication rate of a culture, as well as the rates of rooting and acclimatization, has a major effect on the number of transfers needed for producing plants or tissue for banking, and improvements that will increase the efficiency of these steps can help lower costs. Further research into factors affecting the growth of tissues in vitro, as well as coordination of efforts among institutions with infrastructure for in vitro work, should facilitate the application of in vitro methods to the endangered species that cannot be propagated or preserved using seeds.

Keywords

Cost In vitro Ex situ Conservation 

References

  1. Bajaj Y. P. S. Induction of growth in frozen embryos of coconut and ovules of citrus. Curr. Sci. 53: 1215–1216; 1984.Google Scholar
  2. Benson E. E. In vitro plant recalcitrance: an introduction. In Vitro Cell. Dev. Biol., Plant 36: 141–148; 2000.CrossRefGoogle Scholar
  3. Botanic Gardens Conservation International. Plants. The Global Partnership for Plant Conservation. Supporting the worldwide implementation of the Global Strategy for Plant Conservation. http://www.bgci.org/plants2010/index/. Cited 15 Mar. 2010.
  4. Bunn E.; Dixon K. W. In vitro propagation of the rare and endangered Grevillea scapigera (Proteaceae). HortSci. 27: 261–262; 1992.Google Scholar
  5. Center for Plant Conservation. National collection of endangered plants, species profiles. http://www.centerforplantconservation.org. Cited 30 Nov. 2009.
  6. Chandrika M.; Ravishankar rai V. An assessment of genetic stability in micropropagated plants of Ochreinauclea missionis by RAPD markers. Current Trends in Biotechnology and Pharmacy 3; 2009. http://www.pharmainfo.net/articles/polyzygus-tuberosus-dalz-assessment-genetic-stability-micropropagated-plants-ochreinauclea-.
  7. Christianson M. L. A simple protocol for cryopreservation of mosses. The Bryol. 101: 32–35; 1998.Google Scholar
  8. Conservation Biotechnology Network. Kew Gardens, Richmond, UK; http://www.kew.org/mailman/listinfo/conservationbiotechnet. Cited 31 Mar. 2010.
  9. Convention on Biological Diversity. Global strategy for plant conservation. The Secretariat of the Convention on Biological Diversity, Montreal, Canada, 13 pp; 2002. http://www.bgci.org/files/Worldwide/GSPC/globalstrategyeng.pdf. Cited 30 Nov 2009.
  10. Conway W. G. The practical difficulties and financial implications of endangered species breeding programmes. Int. Zoo Yearb. 24/25: 210–219; 1986.CrossRefGoogle Scholar
  11. Daws M. I.; Garwood N. C.; Pritchard H. W. Traits of recalcitrant seeds in a semi-deciduous tropical forest in Panama: some ecological implications. Funct. Ecol. 19: 874–885; 2005.CrossRefGoogle Scholar
  12. DeFossard R. A. Commercial micropropagation. CD. DeFossard, RA; Queensland, Australia; 2000.Google Scholar
  13. Dixon K. W. Towards integrated conservation of Australian endangered plants: the Western Australia model. Biodivers. Conserv. 3: 148–159; 1994.CrossRefGoogle Scholar
  14. Engelmann F. Plant cryopreservation: Progress and prospects. In Vitro Cell. Dev. Biol., Plant 40: 427–433; 2004.CrossRefGoogle Scholar
  15. Epperson J. E. A cost analysis of maintaining cassava plant genetic resources. Crop Sci. 37: 1641–1649; 1997.CrossRefGoogle Scholar
  16. Eulliss A. C.; Fisk M. C.; Coleman McCleneghan S.; Neufeld H. S. Allocation and morphological responses to resources manipulations are unlikely to mitigate shade intolerance in Houstonia montana, a rare southern Appalachian herb. Can. J. Bot. 85: 976–985; 2007.CrossRefGoogle Scholar
  17. Fabre J.; Dereuddre J. Encapsulation dehydration: a new approach to cryopreservation of Solanum shoot tips. Cryo-lett. 11: 413–426; 1990.Google Scholar
  18. Fay M. F. Conservation of rare and endangered plants using in vitro methods. In Vitro Cell. Dev. Biol., Plant 28: 1–4; 1992.Google Scholar
  19. Foster R. B.; Hubbell S. P. The floristic composition of the Barro Colorado Island forest. In: Gentry A. H. (ed) Four neotropical rainforests. Yale University Press, New Haven, CT, USA pp 85–98; 1990.Google Scholar
  20. Fowler C. The Svalbard global seed vault: securing the future of agriculture. Global Crop Diversity Trust, Rome, IT; 2008.Google Scholar
  21. Gärdenfors U. Classifying threatened species at national versus global levels. Trends Ecol. Evol. 16: 511–516; 2001.CrossRefGoogle Scholar
  22. Guerrant E. O. Jr.; Fiedler P. L.; Havens K.; Maunder M. Revised genetic sampling guidelines for conservation collections of rare and endangered plants. In: Guerrant E. O. Jr.; Havens K.; Maunder M. (eds) Ex situ plant conservation: supporting species survival in the wild. Island Press, Washington, DC, pp 419–438; 2004.Google Scholar
  23. IAEA Low cost options for tissue culture technology in developing countries. IAEA-TECDOC-1384, International Atomic Energy Agency, Vienna, Austria; 2004.Google Scholar
  24. IUCN (International Union for Conservation of Nature). Red list; 2010. http://www.iucnredlist.org/about/red-list-overview. Cited 15 Mar.
  25. Keller E. R. J.; Kaczmarczyk A.; Senula A. Cryopreservation for plant genebanks: a matter between high expectations and cautious reservation. Cryo-lett. 29: 53–62; 2008.Google Scholar
  26. Keller E. R. J.; Senula A.; Leunufna S.; Grübe M. Slow growth storage and cryopreservation—tools to facilitate germplasm maintenance of vegetatively propagated crops in living plant collections. Int. J. Refrig. 3: 411–417; 2006.CrossRefGoogle Scholar
  27. Kioko J.; Berjak P.; Pritchard H.; Daws M. Seeds of the African pepper bark (Warburgia salutaris) can be cryopreserved after rapid dehydration in silica gel. In: Engelmann F., Takagi H. (eds) Cryopreservation of tropical plant germplasm: current research progress and application. Japan International Research Centre for Agricultural Sciences, Tsukuba, Japan/IPGRI, Rome, Italy, pp 371–377; 1999.Google Scholar
  28. Koo B.; Pardey P. G.; Wright B. D. Endowing future harvests: the long term costs of conserving genetic resources at the CGIAR centres. International Plant Genetic Resources Institute, Italy; 2002.Google Scholar
  29. Koo B.; Pardey P. G.; Wright B. D. The economic costs of conserving genetic resources at the CGIAR centres. Agric. Econ. 29: 287–297; 2003.Google Scholar
  30. Lal M. The culture of bryophytes, including apogamy, apospory, parthenogenesis and protoplasts. In: Dyer A. F.; Duckett A. G. (eds) The experimental biology of bryophytes. Academic Press, London, UK, pp 97–115; 1984.Google Scholar
  31. Li D.-Z.; Pritchard H. W. The science and economics of ex situ plant conservation. Trends Plant Sci. 14: 614–621; 2009.PubMedCrossRefGoogle Scholar
  32. Liu K.; Eastwood R. J.; Flynn S.; Turner R. M.; Stuppy W. H. Seed Information Database (release 7.1 May 2008); 2008. http://www.kew.org/data/sid. Cited 15 Mar.
  33. Maunder M.; Guerrant E. P. Jr.; Havens K.; Dixon K. W. Realizing the full potential of ex situ contributions to global plant conservation. In: Guerrant E. O. Jr, Havens K., Maunder M. (eds) Ex situ plant conservation: supporting species survival in the wild. Island Press, Washington, pp 389–418; 2004.Google Scholar
  34. Negash A.; Krens F.; Schaart J.; Visser B. In vitro conservation of enset under slow-growth conditions. Plant Cell, Tissue Organ Cult. 66: 107–111; 2001.CrossRefGoogle Scholar
  35. Normah M. N.; Makeen A. M. Cryopreservation of excised embryos and embryonic axes. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 211–240; 2008.CrossRefGoogle Scholar
  36. Oliphant J. L. In vitro cultivation of Todea barbara— from spore to sporophyte. Intern. Plant Prop. Soc. Proceed. 38: 324–325; 1989.Google Scholar
  37. Panis B.; Totte N.; Vannimmen K.; Withers L. A.; Swennen R. Cryopreservation of banana (Musa spp.) meristem cultures after preculture on sucrose. Plant Sci. 121: 95–106; 1996.CrossRefGoogle Scholar
  38. Pardey P. G.; Koo B.; Wright B. D.; Van Dusen M. E.; Skovmand B.; Taba S. Costing the conservation of genetic resources: CIMMYT's ex situ maize and wheat collection. Crop Sci. 41: 1286–1299; 2001.CrossRefGoogle Scholar
  39. Pence V. C. The application of biotechnology for the conservation of endangered plants. In: Benson E. E. (ed) Plant conservation biotechnology. Taylor & Francis, Ltd., London, UK, pp 227–250; 1999.Google Scholar
  40. Pence V. C. Cryopreservation of in vitro grown fern gametophytes. Am. Fern J. 90: 16–23; 2000.CrossRefGoogle Scholar
  41. Pence V. C. Cryopreservation of shoot tips of Selaginella uncinata. Am. Fern J. 91: 37–40; 2001.CrossRefGoogle Scholar
  42. Pence V. C. Ex situ conservation of ferns and lycophytes—approaches and techniques. In: Ranker T. A., Haufler, C. H. (eds) Biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge, pp 284–300; 2008.CrossRefGoogle Scholar
  43. Pence V. C.; Clark J. R.; Plair B. L. Wild and endangered species. In: Pence V. C., Sandoval J. A., Villalobos V. M., Engelmann F. (eds) In vitro collecting techniques for germplasm conservation. IPGRI Technical Bulletin No. 7. International Plant Genetic Resources Institute, Rome, Italy, pp 76–82; 2002.Google Scholar
  44. Pence V. C.; Sandoval J. A. Controlling contamination during in vitro collecting. In: Pence VC, Sandoval JA, Villalobos VM, Engelmann F (eds) In vitro Collecting Techniques for Germplasm Conservation. IPGRI Technical Bulletin No. 7. International Plant Genetic Resources Institute, Rome, Italy, pp 30–40; 2002.Google Scholar
  45. Pence V. C.; Winget G. D.; Lindsey K. L.; Plair B. L.; Charls S. M. Propagation and cryopreservation of Todsen’s pennyroyal (Hedeoma todsenii) in vitro. Madrono. 56: 221–228; 2010.Google Scholar
  46. Pritchard H. W.; Daws M. I.; Fletcher M. J.; Gaméne C. S.; Msanga H. P.; Omondi W. Ecological correlates of seed desiccation tolerance in tropical African dryland trees. Am. J. Bot. 91: 863–870; 2004a.CrossRefGoogle Scholar
  47. Pritchard H. W.; Wood C. B.; Hodgesn S.; Vautiern H. J. 100-seed test for desiccation tolerance and germination: a case study on eight tropical palm species. Seed Sci. Technol. 32: 393–403; 2004b.Google Scholar
  48. Reed B. M.; Engelmann F.; Dulloo M. E.; Engels J. M. M. Technical guidelines for the management of field and in vitro germplasm collections. IPGRI Handbooks for Genebanks No. 7. IPGRI (Now Bioversity International); 2004.Google Scholar
  49. Reed B. M.; Schumacher L.; Dumet D.; Benson E. E. Evaluation of a modified encapsulation-dehydration procedure incorporating sucrose pretreatments for the cryopreservation of Ribes germplasm. In Vitro Cell. Dev. Biol., Plant 41: 431–436; 2005.CrossRefGoogle Scholar
  50. Reed B. M.; Uchendu E. Controlled rate cooling. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, New York, NY, USA, pp 77–92; 2008.CrossRefGoogle Scholar
  51. Sakai A.; Hirai D.; Niino T. Development of PVS-based vitrification and encapsulation–vitrification protocols. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 33–57; 2008.CrossRefGoogle Scholar
  52. Sakai A.; Kobayashi S.; Oiyama I. Cryoprservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 9: 30–33; 1990.CrossRefGoogle Scholar
  53. Sargent M. L. A guide to the axenic culturing of a spectrum of bryophytes. In: Glime J. M. (ed) Methods in bryology. Hattori Botanical Institute.Nichinan, Japan, pp 17–24; 1988.Google Scholar
  54. Savona M.; Mascarello C.; Mantovani E.; Minuto L.; Casazza G.; Ruffoni B. Strategy to improve the quality, acclimatization and ex vitro re-introduction of micropropagated plants of Limonium cordatum (L.) Mill., a Mediterranean endemic. Acta Hort 812: III International Symposium on Acclimatization and Establishment of Micropropagated Plants. University of Algarve, Faro, Portugal; 2009.Google Scholar
  55. Saxena S.; Chandak V.; Ghosh S. B.; Sinha R.; Jain N.; Gupta A. K. Costs of conservation of agrobiodiversity in India. In: Virchow D. (ed) Efficient conservation of crop genetic diversity: theoretical approaches and empirical studies. Springer, New York, NY, USA, pp 137–174; 2003.Google Scholar
  56. Schäfer-Menuhr A.; Müller E.; Mix-Wagner G. Cryopreservation: An alternative for the long-term storage of old potato varieties. Potato Res. 39: 507–513; 1996.CrossRefGoogle Scholar
  57. Sugii N.; Lamoureux C. Tissue culture as a conservation method: an empirical view from Hawaii. In: Guerrant E. O. Jr.; Havens K.; Maunder M. (eds) Ex situ plant conservation. Island Press, Washington, pp 189–205; 2004.Google Scholar
  58. Swanson W. F.; Stoops M. A.; Magarey G. M.; Herrick J. R. Sperm crypreservation in endangered felids: developing linkage of in situ-ex situ populations. In: Roldan E, Gomenido M. (eds) Spermatology. Nottingham University Press, Nottingham, UK pp 417–432; 2007.Google Scholar
  59. Tannoury M.; Ralambosoa J.; Kaminski M.; Dereuddre J. Cryopreservation by vitrification of coated shoot-tips of carnation (Dianthus caryophyllus L.) cultured in vitro. Comptes Rendus Acad Sci, Paris, pp 633–638; 1991.Google Scholar
  60. Touchell D.; Walters C. Recovery of embryos of Zizania palustris following exposure to liquid nitroget. Cryo-lett. 21: 261–270; 2000.Google Scholar
  61. Towill L. E.; Ellis D. D. Cryopreservation of dormant buds. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, New York, NY, USA, pp 421–426; 2008.CrossRefGoogle Scholar
  62. Tropicos. Botanical information system at the Missouri Botanical Garden, St. Louis, MO, USA. www.tropicos.org. Cited 15 Mar. 2010.
  63. Trusty J. L.; Miller I.; Pence V. C.; Plair B. L.; Boyd R. S.; Goertzen L. R. Ex situ conservation of the federally endangered plant species Clematis socialis Kral (Ranunculaceae): a collaborative approach. Nat. Areas J. 29: 376–384; 2009.CrossRefGoogle Scholar
  64. Tweddle J. C.; Dickie J. B.; Baskin C. C.; Baskin J. M. Ecological aspects of seed desiccation sensitivity. J. Ecol. 91: 294–304; 2003.CrossRefGoogle Scholar
  65. Uragami A.; Sakai A.; Nagai M. Cryopreservation of dried axillary buds from plantlets of Asparagus officinalis L. grown in-vitro. Plant Cell Rep. 9: 328–331; 1990.CrossRefGoogle Scholar
  66. Walters C. Optimising seed banking procedures. In: Smith R. D.; Dickie J. B.; Linington S. H.; Pritchard H. W.; Probert R. J. (eds) Seed conservation: turning science into practice. Royal Botanic Gardens Kew, UK pp 723–743; 2003.Google Scholar
  67. Wesley-Smith J.; Walters C.; Berjak P.; Pammenter N. W. The influence of cytoplasmic viscosity, cooling and warming rate upon survival of embryonic axes of Poncirus trifolata (L.). Cryo-lett. 25: 129–138; 2004.Google Scholar
  68. Wilkinson T. In vitro techniques for the conservation of Hymenophyllum tunbrigense (L.) Sm. Fern Gaz. 16: 458; 2002.Google Scholar
  69. Wintgens J.; Zamarripa C. A. Coffee propagation. In: Wintgens J. N. (ed) Coffee: growing, processing, sustainable production: a guidebook for growers, 2nd Ed. Wiley-VCH Weinheim, Germany; 2009.Google Scholar
  70. Withers L. A. Cryopreservation of cultured plant cells and protoplasts. In: Kartha K. K. (ed) Cryopreservation of plant cells and organs. CRC, Boca Raton, pp 243–267; 1985.Google Scholar
  71. Withers L. A. Biotechnology and plant genetic resources conservation. In: Paroda R. S.; Arora R. K. (eds) Plant genetic resources conservation and management—concepts and approaches. IPBGR—SSEA, New Delhi, India, pp 273–297; 1991.Google Scholar
  72. World Checklist of Selected Plant Families. The Board of Trustees of the Royal Botanic Gardens, Kew, UK. http://www.kew.org/wcsp/. Cited 15 Mar. 2010.

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  1. 1.Center for Conservation and Research of Endangered WildlifeCincinnati Zoo & Botanical GardenCincinnatiUSA

Personalised recommendations