In Vitro Cellular & Developmental Biology - Plant

, Volume 47, Issue 1, pp 65–81

Cryoconservation of South African plant genetic diversity

  • Patricia Berjak
  • Paul Bartels
  • Erica E. Benson
  • Keith Harding
  • David J. Mycock
  • Norman W. Pammenter
  • Sershen
  • James Wesley-Smith
Invited Review


South Africa has a rich flora which exhibits among the highest species density in the world, distributed across nine biomes that support an impressive diversity of animal life. However, a variety of human actions, invasion by alien species, natural disturbances and climate change collectively impact negatively on the great diversity of both plant and animal species. In situ conservation has long been practised, primarily in nature reserves, complemented by ex situ conservation in national botanic gardens, but in vitro plant conservation is not common. In the context of animal biodiversity conservation, the Wildlife Biological Resource Centre of the National Zoological Gardens utilises cryobanking as one of its major focuses and is now poised to expand as the repository for the cryoconservation of plant germplasm, particularly for indigenous recalcitrant-seeded and poor-seeding species. However, there are particular problems associated with successful germplasm cryostorage of such tropical and subtropical plants. As we see the science and application of cryobiology and cryoconservation as cross-cutting and transdisciplinary, we have entrained formal networking among scientists offering a range of specialisations aimed at a deeper understanding of common problems and practical outcomes to facilitate both plant and animal biobanking. The endeavours are aimed at elucidating the basis of both successes and failures in our efforts to attain optimal outcomes. With focus on best practices, standard operating procedures, validation and risk management for cryopreserved and cold-stored plant and animal material, our ultimate aim is to facilitate restoration by the safe reintroduction of indigenous species.


Biobanking Cryopreservation Ecosystems Genetic resources Indigenous Recalcitrant Restoration 


  1. ARC. National collection of fungi. Cited 3 Jan 2010; 2009a.
  2. ARC. Plant pathogenic and plant protecting bacteria. Cited 3 Jan 2010; 2009b.
  3. Barnard R.; Newby T. Sustainability of terrestrial ecosystems. In: National State of the Environment Report—South Africa. Cited 1 Jan 2010; 1999.
  4. Benson E. E. (ed) Plant conservation biotechnology. Taylor and Francis, London; 1999.Google Scholar
  5. Benson E. E. Cryoconserving algae and plant diversity: historical perspectives and future challenges. In: Fuller B.; Lane N.; Benson E. E. (eds) Life in the frozen state. CRC, London, pp 299–328; 2004.CrossRefGoogle Scholar
  6. Benson E. E. Cryopreservation of phytodiversity: a critical appraisal of theory and practice. Critical Review in Plant Sciences 27: 141–219; 2008.CrossRefGoogle Scholar
  7. Berjak P. Current status of cryopreservation research and future perspectives of its application in South Africa. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical germplasm: current research progress and application. Jircas International Agriculture Series no. 8. IPGRI, Rome; 2000.Google Scholar
  8. Berjak P.; Farrant J. M.; Mycock D. J.; Pammenter N. W. Recalcitrant (homoiohydrous) seeds: the enigma of their desiccation-sensitivity. Seed Sci & Technol 18: 297–310; 1990.Google Scholar
  9. Berjak P.; Kioko J. I.; Walker M.; Mycock D. J.; Wesley-Smith J.; Watt P.; Pammenter N. W. Cryopreservation—an elusive goal? In: Marzalina M.; Khoo K. C.; Jayanthi N.; Tsan F. Y.; Krishnapillay B. (eds) Recalcitrant seeds. FRIM, Kuala Lumpur, pp 132–139; 1999b.Google Scholar
  10. Berjak P.; Mycock D. J. Calcium, with magnesium, is essential for normal seedling development from partially-dehydrated recalcitrant axes: a study on Trichilia dregeana Sond. Seed Sci Res 14: 217–231; 2004.CrossRefGoogle Scholar
  11. Berjak P.; Pammenter N. W. Biotechnological aspects of non-orthodox seeds: an African perspective. S Afr J Bot 70: 102–108; 2004.Google Scholar
  12. Berjak P.; Pammenter N. W. From Avicennia to Zizania: seed recalcitrance in perspective. Ann Bot 101: 213–228; 2008.PubMedCrossRefGoogle Scholar
  13. Berjak P.; Walker M.; Watt M. P.; Mycock D. J. Experimental parameters underlying failure or success in plant germplasm cryopreservation: a case study on zygotic axes of Quercus robur L. CryoLetts 20: 251–262; 1999a.Google Scholar
  14. Börner A. Preservation of plant genetic resources in the biotechnology era. Biotech J 1: 1393–1404; 2006.CrossRefGoogle Scholar
  15. Cherry M. South Africa—serious about biodiversity science. PloS Biol 3(5): e145; 2005.PubMedCrossRefGoogle Scholar
  16. Day J. G.; Benson E. E.; Fleck R. A. In vitro culture and conservation of microalgae: applications for aquaculture, biotechnology and environmental research. In vitro Cell Dev. Biol.—Plant 35: 127–136; 1999.CrossRefGoogle Scholar
  17. DEAT (Department of Environment & Tourism). South Africa’s National Biodiversity Strategy and Action Plan, Department of Environment & Tourism. First cited Jul 2008; 2005.
  18. Department of Science and Technology (DST). Innovation towards a knowledge-based economy. Ten-year plan for South Africa. Cited 6 Jan 2010; 2008.
  19. Department of Science and Technology (DST). Technology for sustainable livelihoods. Cited 2 Jan 2010; 2010.
  20. Engelmann F. Use of biotechnologies for conserving plant biodiversity. Acta Hort 812: 63–82; 2009.Google Scholar
  21. Gonzalez-Arnao M. T.; Engelmann F. Cryopreservation of plant germplasm using the encapsulation-dehydration technique: review and case study on sugarcane. CryoLetts 27: 155–168; 2006.Google Scholar
  22. Goveia M.; Kioko J. I.; Berjak P. Developmental status is a critical factor in the selection of excised recalcitrant axes as explants for cryopreservation: a study on Trichilia dregeana Sond. Seed Sci Res 14: 241–248; 2004.CrossRefGoogle Scholar
  23. Hannah L.; Midgley G. F.; Lovejoy T.; Bond W. J.; Bush M.; Lovett J. C.; Scott D.; Woodward F. I. Conservation of biodiversity in a changing climate. Conserv Biol 16: 264–268; 2002.CrossRefGoogle Scholar
  24. Harding K. Genetic integrity of cryopreserved plant cells: a review. CryoLetts 25: 3–22; 2004.Google Scholar
  25. Harding K.; Johnston J. W.; Benson E. E. Exploring the physiological basis of cryopreservation success and failure in clonally propagated in vitro crop plant germplasm. Agriculture and Food Science 18: 3–16; 2009.CrossRefGoogle Scholar
  26. Hiemstra S. J.; van der Lende T.; Woelders H. The potential of cryopreservation and reproductive technologies for animal genetic resources conservation strategies. In: Ruane J.; Sonnino A. (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. FAO, Rome, pp 45–59; 2006.Google Scholar
  27. Hitchcock A. Integrated conservation at Kirstenbosch National Botanical Gardens. Samara 10_January–June.; 2006.
  28. Holt W. V. Cryobiology, wildlife conservation and reality. CryoLetts 29: 43–52; 2008.Google Scholar
  29. ISBER (International Society for Biological and Environmental Repositories). Best practices for repositories. Cell Preservation Technology 6: 3–58; 2008.CrossRefGoogle Scholar
  30. Jackson P. W.; Kennedy K. The global strategy for plant conservation: a challenge and opportunity for the international community. Trends Plant Sci 14: 578–580; 2009.CrossRefGoogle Scholar
  31. Johnston J.; Harding K.; Benson E. E. Detection of 8-hydroxy-2′-deoxyguanosine as a marker of DNA damage in germplasm and DNA exposed to cryogenic treatments. CryoLetters 31: 1–13; 2010.PubMedGoogle Scholar
  32. Keller E. R. J.; Kaczmarczyk A.; Senula A. Cryopreservation for plant genebanks—a matter between high expectations and cautious reservation. CryoLetts 29: 53–62; 2008.Google Scholar
  33. King N.; Rosmarin T.; Friedmann Y.; Reyers B.; Owen-Smith N.; Kock E. Biodiversity and ecosystem health. In: South Africa environmental outlook, revised edition. Department of Environmental Affairs and Tourism, Pretoria, Republic of South Africa, Africa: 107–140; 2007.Google Scholar
  34. Kioko J. I.; Berjak P.; Pammenter N. W. Responses to dehydration and conservation of the non-orthodox seeds of Warburgia salutaris. S Afr J Bot 69: 532–539; 2003.Google Scholar
  35. Kioko J. I.; Berjak P.; Pammenter N. W. Viability and ultrastructural responses of seeds and embryonic axes of Trichilia emetica to different dehydration and storage conditions. S Afr J Bot 71: 167–176; 2006.CrossRefGoogle Scholar
  36. Kioko J.; Berjak P.; Pritchard H.; Daws M. Studies of post-shedding behaviour and cryopreservation of seeds of Warburgia salutaris, a highly-endangered medicinal plant indigenous to tropical Africa. In: Marzalina M.; Khoo K. C.; Jayanthi N.; Tsan F. Y.; Krishnapillay B. (eds) Recalcitrant seeds. FRIM, Kuala Lumpur, pp 365–371; 1999.Google Scholar
  37. Kioko J.; Berjak P.; Pritchard H.; Daws M. Seeds of the African pepper bark (Warburgia salutaris) can be cryopreserved after rapid dehydration in silica gel. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical germplasm: current research progress and application. IPGRI, Rome, pp 371–377; 2000.Google Scholar
  38. Kramer A. T.; Havens K. Plant conservation genetics in a changing world. Trends Plant Sci 14: 599–607; 2009.PubMedCrossRefGoogle Scholar
  39. Li D.-Z.; Pritchard H. W. The science and economics of ex situ plant conservation. Trends Plant Sci 14: 614–621; 2009.PubMedCrossRefGoogle Scholar
  40. Lynch P. T.; Benson E. E.; Harding K. Invited Commentary: Climate change: the role of ex situ and cryo-conservation in the future security of economically important, vegetatively propagated plants. J Hortic. Sci. Biotechnol. 82: 157–160; 2007.Google Scholar
  41. Manamela M. T. Morphological characterisation and cryopreservation of sweet potato Ipomoea batatas (L.) Lam., Master’s thesis, accessions at the NPGRC of South Africa.; 2009.Google Scholar
  42. Mucina L.; Rutherford M. C. (eds). The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria, South Africa. Map data from accompanying CD; 2006.Google Scholar
  43. Muldrew K.; Acker J. P.; Elliot J. A. W.; McGann L. E. The water to ice transition: implications for living cells. In: Fuller B.; Lane N.; Benson E. E. (eds) Life in the frozen state. CRC, London, pp 67–108; 2004.CrossRefGoogle Scholar
  44. Müller J.; Day J. G.; Harding K.; Hepperle D.; Lorenz M.; Friedl T. Assessing genetic stability of a range of terrestrial microalgae after cryopreservation using amplified fragment length polymorphism (AFLP). Amer J of Bot 94: 799–808; 2007.CrossRefGoogle Scholar
  45. Mycock D. J. Addition of calcium and magnesium to a glycerol and sucrose cryoprotectant solution improves the quality of plant embryo recovery from cryostorage. CryoLetts 20: 77–82; 1999.Google Scholar
  46. Mycock D. J.; Blakeway F. C.; Watt M. P. General applicability of in vitro storage technology to the conservation and maintenance of plant germplasm. S Afr J Bot 70: 31–36; 2004.Google Scholar
  47. Mycock D. J.; Watt M. P.; Hannweg K. F.; Naicker K.; Makwarela M.; Berjak P. Micropropagation of two indigenous Haworthia spp. (H. limifolia and H. koelmaniorum). S Afr J Bot 63: 345–350; 1997.Google Scholar
  48. Mycock D. J.; Wesley-Smith J.; Berjak P. Cryopreservation of somatic embryos of four species with and without cryoprotectant pre-treatment. Ann Bot 75: 331–336; 1995.CrossRefGoogle Scholar
  49. Ngobese N.Z.; Sershen; Pammenter N.W.; Berjak P. Cryopreservation of the embryonic axes of Phoenix reclinata, a representative of the intermediate seed category. Seed Sci Tech 38: 705-717; 2010.Google Scholar
  50. Nigro S. A.; Makunga N. P.; Grace O. M. Medicinal plants at the ethnobotany–biotechnology interface. S Afr J Bot 70: 89–96; 2004.Google Scholar
  51. OBIS (Ocean Biogeographic Information System) ( Rutgers, NJ.
  52. OECD (Organization for Economic Cooperation and Development). Biological resource centres: underpinning the future of life sciences and biotechnology. OECD, Paris; 2001.Google Scholar
  53. OECD (Organization for Economic Cooperation and Development). OECD best practice guidelines for biological resource centres. OECD, Paris; 2007.Google Scholar
  54. Okole B. N.; Odhav B. Commercialisation of plants in Africa. S Afr J Bot 70: 109–115; 2004.Google Scholar
  55. Padayachee K.; Watt M. P.; Edwards N.; Mycock D. J. Cryopreservation as a tool for the conservation of Eucalyptus genetic variability: concepts and challenges. Southern Forests 71: 165–170; 2009.CrossRefGoogle Scholar
  56. Pammenter N. W.; Berjak P. A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Sci Res 9: 13–38; 1999.Google Scholar
  57. Pammenter N. W.; Berjak P.; Goveia M.; Sershen; Kioko J. I.; Whitaker C.; Beckett R. P. Cryo-conservation of genetic diversity of recalcitrant-seeded species via zygotic embryonic axes: successes and problems. Acta Hort; 2010/2011 (in press).Google Scholar
  58. Pammenter N. W.; Berjak P.; Wesley-Smith J.; Vander Willigen C. Experimental aspects of drying and recovery. In: Black M.; Pritchard H. W. (eds) Desiccation and survival in plants: drying without dying. CABI, Wallingford; 2002.Google Scholar
  59. Pammenter N. W.; Greggains V.; Kioko J. I.; Wesley-Smith J.; Berjak P.; Finch-Savage W. E. The time factor during dehydration of non-orthodox (recalcitrant) seeds: effects of different drying rates on viability retention in Ekebergia capensis. Seed Sci Res 8: 468–471; 1998.CrossRefGoogle Scholar
  60. Panis B. Cryopreservation of Musa germplasm, 2nd edn. Technical Guidelines No. 9 (edited by Engelmann F, Benson E). Bioversity International Montpellier, France; 2009.Google Scholar
  61. Panis B.; Lambardi M. Status of cryopreservation technologies in plants (crops and forest trees). In: Ruane J.; Sonnino A. (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. FAO, Rome, pp 61–78; 2006.Google Scholar
  62. Pence V. C. Desiccation and the survival of Aesculus, Castanea and Quercus embryo axes through cryopreservation. Cryobiology 29: 391–399; 1992.CrossRefGoogle Scholar
  63. Perán R.; Berjak P.; Pammenter N. W.; Kioko J. Cryopreservation, encapsulation and promotion of shoot production of embryonic axes of a recalcitrant species, Ekebergia capensis Sparrm. CryoLetts 27: 5–16; 2006.Google Scholar
  64. Pritchard H. W.; Tompsett P. B.; Manger K.; Smidt W. J. The effect of moisture content on the low temperature responses of Araucaria hunsteinii seed and embryos. Ann Bot 76: 79–88; 1995.CrossRefGoogle Scholar
  65. Quain M. D.; Berjak P.; Acheampong E.; Kioko J. I. Sucrose treatment and explant water content: critical factors to consider in development of successful cryopreservation protocols for shoot tip explants of the tropical species Dioscorea rotundata (yam). CryoLetts 30: 212–223; 2009.Google Scholar
  66. Red Data List Plants in South Africa Cited 1 Jan 2010; 2009.
  67. Reed B. M. (ed). Plant cryopreservation. A practical guide. Springer, New York; 2008.Google Scholar
  68. Reed B. M.; Engelmann F.; Dulloo M. E.; Engels J. M. M. Technical guidelines for the management of field and in vitro germplasm collections. IPGRI Handbooks for Genebanks No. 7. IPGRI, Rome, Italy; 2004.Google Scholar
  69. Rutherford M. C.; Midgley G. F.; Bond W. J.; Powrie L. W.; Roberts R.; Allsopp J. Plant biodiversity. In: Kiker G. (ed) Climate change impacts in southern Africa. Report to the National Climate Change Committee. Department of Environmental Affairs and Tourism, Pretoria, South Africa; 2000.Google Scholar
  70. Sakai A.; Kobayashi S.; Oiyama I. Cryopreservation of nuclear cells of navel orange (Citrus sinensis Osb var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9: 30–35; 1990.CrossRefGoogle Scholar
  71. Scowcroft, W. R. Genetic variability in tissue culture: impact on germplasm conservation and utilisation. International Board for Plant Genetic Resources, Report (AGPG:IBPGR/84/152), Rome, Italy; 1984.Google Scholar
  72. Southern Education & Research Alliance (SERA) e-news. Cited 3 Jan 2010; 2006.
  73. Sershen; Pammenter N. W.; Berjak; Wesley-Smith J. Cryopreservation of embryonic axes of selected amaryllid species. CryoLetts 28: 387–399; 2007.Google Scholar
  74. Sershen; Berjak P.; Pammenter N. W. Desiccation sensitivity of excised embryonic axes of selected amaryllid species. Seed Sci Res 18: 1–11; 2008a.CrossRefGoogle Scholar
  75. Sershen; Pammenter N. W.; Berjak P. Post-harvest behaviour and short- to medium-term storage of recalcitrant seeds and encapsulated embryonic axes of selected amaryllid species. Seed Sci & Technol 36: 133–147; 2008b.Google Scholar
  76. Stern N. The economics of climate change: the Stern review. Her Majesty’s Stationery Office (HMSO), UK; 2006.Google Scholar
  77. Stewart P.; Taylor M.; Mycock D. Somatic embryogenesis in Warburgia salutaris. Proc Mic Soc South Afr 27: 84; 1997.Google Scholar
  78. Stewart P.; Taylor M.; Mycock D. The sequence of the preparative procedures affects the success of cryostorage of cassava somatic embryos. CryoLetts 22: 5–12; 2001.Google Scholar
  79. Skyba M.; Urbanová M.; Kapchina-Toteva V.; Košuth J.; Harding K.; Čellárová E. Physiological, biochemical and molecular characteristics of cryopreserved Hypericum perforatum L. shoots tips. CryoLetters 31: 249–260; 2010.PubMedGoogle Scholar
  80. Thiart S. Where do our potatoes come from? Cited Jan 2 2010; 2006.
  81. Thuiller W.; Midgley G. F.; Rouget M.; Cowling R. M. Predicting patterns of plant species richness in megadiverse South Africa. Ecogeog 29: 733–744; 2006.CrossRefGoogle Scholar
  82. Varghese D.; Berjak P.; Pammenter N. W. Cryopreservation of shoot tips of Trichilia emetica, a tropical recalcitrant-seeded species. CryoLetts 30: 280–290; 2009.Google Scholar
  83. Volk G. M.; Walters C. Plant vitrification solution 2 lowers water content and alters freezing behaviour in shoot tips during cryoprotection. Cryobiology 52: 48–61; 2006.PubMedCrossRefGoogle Scholar
  84. von Ahlefeldt D.; Crouch N. R.; Nichols G.; Symmonds R.; McKean S.; Sibiya H.; Cele M. P. Medicinal plants traded on South Africa’s eastern seaboard. Porcupine Press, Johannesburg; 2003.Google Scholar
  85. von Fintel G. T.; Berjak P.; Pammenter N. W. Seed behaviour in Phoenix reclinata Jaquin, the wild date palm. Seed Sci Res 14: 197–204; 2004.CrossRefGoogle Scholar
  86. Walters C.; Pammenter N. W.; Berjak P.; Crane J. Desiccation damage, accelerated ageing and respiration in desiccation tolerant and sensitive seeds. Seed Sci Res 11: 135–148; 2001.Google Scholar
  87. Watt M. P.; Banasiak M.; Reddy D.; Albertse E. H.; Snyman S. In vitro minimal growth storage of Saccharum spp. hybrid (genotype 88H0019) at two stages of direct somatic embryogenic regeneration. Plant Cell Organ Cult 96: 263–271; 2009.CrossRefGoogle Scholar
  88. Watt M. P.; Thokoane N. L.; Mycock D. J.; Blakeway F. In vitro storage of Eucalyptus germplasm under minimal growth conditions. Plant Cell, Tissue & Organ Culture 61: 161–164; 2000.CrossRefGoogle Scholar
  89. Wesley-Smith J.; Vertucci C. W.; Berjak P.; Pammenter N. W.; Crane J. Cryopreservation of recalcitrant axes of Camellia sinensis in relation to dehydration, freezing rate and the thermal properties of tissue water. J Plant Physiol 140: 596–604; 1992.Google Scholar
  90. Wesley-Smith J.; Pammenter N. W.; Berjak P.; Walters C. The effects of two drying rates on desiccation tolerance of embryonic axes of recalcitrant jackfruit (Artocarpus heterophyllus Lamk.) seeds. Ann Bot 88: 653–664; 2001b.CrossRefGoogle Scholar
  91. Wesley-Smith J.; Walters C.; Berjak P.; Pammenter N. Non-equilibrium cooling of Poncirus trifoliata (L.) embryonic axes at various water contents. CryoLetts 25: 21–128; 2004a.Google Scholar
  92. Wesley-Smith J.; Walters C.; Berjak P.; Pammenter N. W. The influence of water content, cooling and warming rate upon survival of embryonic axes of Poncirus trifoliata (L.). CryoLetts 25: 129–138; 2004b.Google Scholar
  93. Wesley-Smith J.; Walters C.; Pammenter N. W.; Berjak P. Interactions among water contents, rapid (non-equilibrium) cooling to −196°C and survival of embryonic axes of Aesculus hippocastanum L. seeds. Cryobiol 42: 196–206; 2001a.CrossRefGoogle Scholar
  94. Whitaker C.; Beckett Minibayeva F. V.; Kranner I. Production of reactive oxygen species in excised, desiccated and cryopreserved explants of Trichilia dregeana Sond. S Afr J Botany 76: 112–118; 2010.CrossRefGoogle Scholar
  95. Willis C. K.; van Wyk E. Integrating ex situ and in situ conservation. SANBI Biodiversity Series 1: 35–39; 2006.Google Scholar

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  • Patricia Berjak
    • 1
  • Paul Bartels
    • 2
  • Erica E. Benson
    • 1
    • 2
    • 3
    • 4
  • Keith Harding
    • 1
    • 2
    • 3
    • 4
  • David J. Mycock
    • 3
  • Norman W. Pammenter
    • 1
  • Sershen
    • 1
  • James Wesley-Smith
    • 5
  1. 1.School of Biological & Conservation SciencesUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.wBRC/BioBankSA, National Zoological Gardens-National Research FoundationPretoriaSouth Africa
  3. 3.School of Animal, Plant & Environmental SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
  4. 4.Damar Research ScientistsFifeUK
  5. 5.Electron Microscope UnitUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations