Advertisement

In Vitro Cellular & Developmental Biology - Plant

, Volume 46, Issue 6, pp 558–568 | Cite as

Sugarcane metabolites produced in CO2-rich temporary immersion bioreactors (TIBs) induce tomato (Solanum lycopersicum) resistance against bacterial wilt (Ralstonia solanacearum)

  • Liu Yang
  • Yumarys Zambrano
  • Chun-Jin Hu
  • Elva R. Carmona
  • Aydiloide Bernal
  • Alicia Pérez
  • Carlos M. Zayas
  • Yang-Rui Li
  • Abby Guerra
  • Ignacio Santana
  • Ariel D. ArencibiaEmail author
Plant Tissue Culture

Abstract

The production of phenolic metabolites has been optimized in parallel to sugarcane micropropagation in temporary immersion bioreactors (TIBs). Culturing micropropagated plants in 0.4% CO2-rich air induced their photosynthetic activity by enhancing the change from a heterotrophic to a photomixotrophic metabolic stage. Under 0.4% CO2 enrichment, the transcript levels of both phenylalanine ammonia-lyase (PAL EF189195) and ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco CF576750) increased and were correlated to a 4.6- and 6.3-fold increase in the phenolic levels when plants were multiplied in 20 or 30 g/l sucrose, respectively. A novel application of plant phenolic metabolites as elicitors of resistance to tomato bacterial wilt in the Solanum lycopersicumRalstonia solanacearum pathosystem has been identified. The culture media was collected, and the phenolics were sprayed onto tomato plants infected with R. solanacearum, eliciting and/or maintaining an early defense signaling mechanism that resulted in the protection of the plant against the tomato bacterial wilt disease. RT-PCR analyses confirmed that selected genes from defense-related pathways were differentially expressed between plants treated with sugarcane metabolites, non-treated pathogen-free plants, and non-treated plants inoculated with R. solanacearum.

Keywords

Phenylpropanoid Temporary immersion bioreactors (TIBs) Induced disease resistance Sugarcane 

Notes

Acknowledgments

The authors are grateful to Anita K. Snyder, USA, for copyediting and revising the manuscript. Thank you to the postdoctoral fellowships of Ariel D. Arencibia and Elva R. Carmona at Guangxi Academy of Agricultural Sciences (GXAAS).

References

  1. Abdulrazzak N.; Pollet B.; Ehlting J.; Larsen K.; Asnaghi C.; Ronseau S.; Proux C.; Erhardt M.; Seltzer V.; Renou J. P.; Pauly M.; Lapierre C.; Werck-Reichhart D. A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. Plant Physiol. 140: 30–48; 2006.CrossRefPubMedGoogle Scholar
  2. Allen C.; Prior P.; Hayward A. C. Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, Saint Paul, p 528; 2005.Google Scholar
  3. Arencibia A. D.; Bernal A.; Yang L.; Cortegaza L.; Carmona E. R.; Pérez A.; Hu C.-J.; Li Y.-R.; Zayas C. M.; Santana I. New role of phenylpropanoid compounds during sugarcane micropropagation in temporary immersion bioreactors (TIBs). Plant Sci. 175: 487–496; 2008.CrossRefGoogle Scholar
  4. Boerjan W.; Ralph J.; Baucher M. Lignin biosynthesis. Annu. Rev. Plant Biol. 54: 519–546; 2003.CrossRefPubMedGoogle Scholar
  5. Booij-James I. S.; Dube S. K.; Jansen M. A.; Edelman M.; Mattoo A. K. Ultraviolet-B radiation impact light-mediated turnover of the photosystem II reaction center heterodimer in Arabidopsis mutants altered in phenolic metabolism. Plant Physiol. 124: 1275–1283; 2000.CrossRefPubMedGoogle Scholar
  6. Campos-Vargas R.; Nonogaki H.; Suslow T.; Saltveit M. E. Heat shock treatments delay the increase in wound-induced phenylalanine ammonia-lyase activity by altering its expression, not its induction in Romaine lettuce (Lactuca sativa) tissue. Physiol Plantarum 123: 82–91; 2005.CrossRefGoogle Scholar
  7. Chakrabarty D.; Hahn E. J.; Yoon Y. S.; Paek K. Y. Micropropagation of apple root stock ‘M9 EMLA’ using bioreactor. J. Hortic. Sci. Biotechnol. 78: 605–609; 2003.Google Scholar
  8. Chen T.; Zheng W.; Wong Y.-S.; Tang F.; Bai Y. Lucose. Bioresour Technol 97: 2260–2265; 2006.PubMedGoogle Scholar
  9. Conrath U.; MA P. M.; Poinssot B.; Pozo M. J.; Pugin A.; Schaffrath U.; Ton J.; Wendehenne D.; Zimmerli L.; Mauch-Mani B. Priming: getting ready for battle. Mol Plant Microbe Interact 19: 1062–71; 2006.CrossRefPubMedGoogle Scholar
  10. Conrath U.; Pieterse C. M.; Mauch-Mani B. Priming in plant-pathogen interactions. Trends Plant Sci 7: 210–216; 2002.CrossRefPubMedGoogle Scholar
  11. Dudareva N.; Pichersky E.; Gershenzon J. Biochemistry of plant volatiles. Plant Physiol. 135: 1893–1902; 2004.CrossRefPubMedGoogle Scholar
  12. Escalona M.; Lorenzo J. C.; González J.; Daquinta M.; Desjardins Y.; Borroto C. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep 18: 743–748; 1999.CrossRefGoogle Scholar
  13. Escalona M.; Samson G.; Borroto C.; Desjardins Y. Physiology of effects of Temporary Immersion Bioreactors on micropropagated pineapple plantlets. In Vitro Cellular and Developmental Biology – Plant 39: 651–656; 2003.Google Scholar
  14. Falco M. C.; Marbach P. A.; Pompermayer P.; Lopes F. C.; Silva-Filho M. C. Mechanism of sugarcane response to herbivores. Genet Mol Biol 24: 113–122; 2001.CrossRefGoogle Scholar
  15. He X. M.; He H.; Zeng H.; Yang Q.; Wang T. S.; He W. Z.; Li S. The application of micropropagation technique to fast propagating improved sugarcane varieties. Sugan persicum Mill; 1994.Google Scholar
  16. Hvoslef-Eide A.K.; Munster C. Somatic embryogenesis of Cyclaman persicum Mill. in bioreactors. Comb. Proc. Int. Plant Prop. 4: 377–382; 1998.Google Scholar
  17. Ibaraki Y.; Kurata K. Automation of somatic embryo production. Plant Cell Tiss. Org. Cult. 65: 179–199; 2001.CrossRefGoogle Scholar
  18. Ilan A.; Ziv M.; Halevy A. A. In vitro propagation in liquid culture and acclimatization of Brodiaea. Scientia Hort. 63: 101–112; 1995.CrossRefGoogle Scholar
  19. Jakab G.; Ton J.; Flors V.; Zimmerli L.; Métraux J. P.; Mauch-Mani B. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol. 139: 267–74; 2005.CrossRefPubMedGoogle Scholar
  20. Kim D. L.; Pederson H.; Chin C. K. Cultivation of Thalictrum rugosum cell suspension in an improved airlift bioreactor: stimulatory effects of CO2 and C2H4 on alkaloid production. Biotech. Bioengin. 38: 331–339; 1991.CrossRefGoogle Scholar
  21. Kohler A.; Schwindling S.; Conrath U. Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol. 128: 1046–56; 2002.CrossRefPubMedGoogle Scholar
  22. Korkina L. G. Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol. 53: 15–25; 2007.PubMedGoogle Scholar
  23. Kozai T.; Jeong R.; Kubota C.; Murai Y. Effects of volume and initial strength of medium on the growth, photosynthesis and ion uptake of potato (Solanum tuberosum L.) plantlet in vitro. J. Japan Soc. Hort. Sci. 64: 63–71; 1995.Google Scholar
  24. Loaiza-Velarde J. G.; Tomas-Barberan F.; Saltveit M. E. Effect of intensity and duration of heat-shock treatments on wound-induced phenolic metabolism in iceberg lettuce. J. Am. Soc. Hort. Sci. 122: 873–877; 1997.Google Scholar
  25. Lorenzo J. C.; Gonzalez B. L.; Escalona M.; Teisson C.; Espinosa P.; Borroto C. Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tissue and Organ Culture 54: 197–200; 1998.CrossRefGoogle Scholar
  26. Mathew S.; Abraham T. E. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit Rev. Biotechnol 24: 59–83; 2004.CrossRefPubMedGoogle Scholar
  27. Merali Z.; Mayer M. J.; Parker M. L.; Michael A. J.; Smith A. C.; Waldron K. W. Metabolic diversion of the phenylpropanoid pathway causes cell wall and morphological changes in transgenic tobacco stems. Planta 225: 1165–1178; 2007.CrossRefPubMedGoogle Scholar
  28. Murashige T.; Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plantarum 15: 473–497; 1962.CrossRefGoogle Scholar
  29. Paek K. Y.; Hahn E. J.; Son S. H. Application of bioreactors of large scale micropropagation systems of plants. In Vitro Cell. Dev. Biol-Plant. 37: 149–157; 2001.CrossRefGoogle Scholar
  30. Paré P. W.; Farag M. A.; Krishnamachari V.; Zhang H.; Ryu C. M.; Kloepper J. W. Elicitors and priming agents initiate plant defense responses. Photosynth Res. 85: 149–159; 2005.CrossRefPubMedGoogle Scholar
  31. Petersen M.; Strack D.; Matern U. Biosynthesis of phenylpropanoıds and related compounds. In: Wink, M., (Ed), Biochemistry of Plant Secondary Metabolism, Annual Plant Reviews. CRC Press, Boca Raton, FL. 1999. pp 151–221.Google Scholar
  32. Rodríguez R.; Cid M.; Pina D.; Gonzalez-Olmedo J.L.; Desjardins Y. Growth and photosynthetic activity during acclimatization of sugarcane plantlets cultivated in temporary immersion bioreactors. In Vitro Cellular and Developmental Biology – Plant 39: 657-662; 2003.Google Scholar
  33. Sambrook E.J.; Fritsch F.; Maniatis T. Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory Press.1989.Google Scholar
  34. Ton J.; D'Alessandro M.; Jourdie V.; Jakab G.; Karlen D.; Held M.; Mauch-Mani B.; Turlings T. C. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 49: 16–26; 2007.CrossRefPubMedGoogle Scholar
  35. Ton J.; Jakab G.; Toquin V.; Flors V.; Iavicoli A.; Maeder M. N.; Métraux J. P.; Mauch-Mani B. Dissecting the beta-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell. 17: 987–999; 2005.CrossRefPubMedGoogle Scholar
  36. Vanisree M.; Lee C-Y.; Lo S-F.; Nalawade S.M.; Lin C.Y.; Tsay H-S. Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Bot. Bull. Acad. Sin. 45: 1-22; 2004.Google Scholar
  37. Yamane Y-I.; Utsunomiya T.; Watanebe M.; Sasaki K. Biomass production in mixotrophic culture of Euglena gracilis under acidic condition and its growth energetics. Biotechnology Letters 23: 1223-1228; 2001.Google Scholar
  38. Yang Q. F.; Yin X. G.; Pan G. H.; Zhang Y. Identifying of pathogen and screening of resistance to bacterial wilt on tomato in Chongqing. Southwest China Journal of Agricultural Sciences 17: 57–60; 2004.Google Scholar
  39. Zabala G.; Zou J.; Tuteja J.; Gonzalez D. O.; Clough S. J.; Vodkin L. O. Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. BMC Plant Biol. 6: 26; 2006.CrossRefPubMedGoogle Scholar
  40. Ziv M. Bioreactor technology for plant micropropagation. Horticultural Reviews 24: 1–14; 2000.Google Scholar

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  • Liu Yang
    • 1
  • Yumarys Zambrano
    • 2
  • Chun-Jin Hu
    • 1
  • Elva R. Carmona
    • 1
    • 2
  • Aydiloide Bernal
    • 2
  • Alicia Pérez
    • 2
  • Carlos M. Zayas
    • 2
  • Yang-Rui Li
    • 1
  • Abby Guerra
    • 3
  • Ignacio Santana
    • 2
  • Ariel D. Arencibia
    • 1
    • 2
    Email author
  1. 1.Guangxi Academy of Agricultural SciencesNanningPeople’s Republic of China
  2. 2.Institute for Sugarcane ResearchHavana CityCuba
  3. 3.Biotechnology and Research Lab.Calesa GroupAguadulcePanamá

Personalised recommendations