Advertisement

In vitro conservation of Malaysian biodiversity—achievements, challenges and future directions

  • Normah M. NoorEmail author
  • Choo Wee Kean
  • Yap Lip Vun
  • Zeti Azura Mohamed-Hussein
Invited Review

Abstract

Malaysia is fortunate and proud to contain some of the world’s richest biodiversity. In Malaysia, there are an estimated 185,000 species of fauna and 12,500 species of flowering plants, many of which are endemic to tropical forests in this region. Indeed, such diversity is an important and invaluable national asset to safeguard both present and future generations. In vitro conservation offers possible techniques for the preservation of plant germplasm that at present is difficult to maintain or is maintained with limited success. Research at the Universiti Kebangsaan Malaysia (The National University of Malaysia) focuses on the cryopreservation of woody fruit species with seeds that cannot tolerate cryopreservation (recalcitrant or intermediate). Among the plants with recalcitrant seeds are such traditionally important edible tropical fruits as mangosteen, langsat, and rambai (Garcinia mangostana, Lansium domesticum, and Baccaurea motleyana). Citrus aurantifolia, Citrus suhuiensis, Citrus madurensis, Citrus hystrix, and Fortunella polyandra are among the Citrus and Citrus-related species studied. Cryopreservation studies include the Nepenthes species (pitcher plants) of Malaysia. Fundamental research on desiccation and low-temperature tolerance and on the physiology of desiccation are used to understand seed behavior, a prerequisite for the development of successful conservation techniques. At the same time, cryopreservation protocols for several Citrus and forestry species were developed for embryonic axes and adventitious shoots, mainly using rapid dehydration and PVS2 vitrification techniques. There are no successful standard techniques or protocols for species with highly recalcitrant seeds such as Garcinia species. Modification of existing protocols or development of new methods is required, but this can be accomplished only when a detailed understanding of the recalcitrant nature of the seeds or explants is achieved. While we have considerable knowledge concerning the basics of biochemical processes and some molecular data from work on desiccation-tolerant seeds, a great need remains for understanding the cause of the recalcitrance or desiccation sensitivity of these seeds. It may be necessary to use a systems biology approach that exploits the “omics” technologies to generate global molecular data. In combination with bioinformatics for data integration and analyses, this approach would move toward improved modeling of the biological pathways associated with the development of recalcitrant seeds.

Keywords

Cryopreservation Recalcitrant seeds Embryonic axes Shoot tips 

Notes

Acknowledgments

The authors express their thanks to the Ministry of Science, Technology and Innovation (MOSTI), Malaysia, and International Plant Genetic Resources Institute (IPGRI), now known as Bioversity International, for various grants to support these conservation efforts. We thank Dr. Marzalina Mansor and Ms Nashatul Zaimah from the Forest Research Institute of Malaysia (FRIM) for contributing the information in the manuscript.

References

  1. Al-Zoubi O. M.; Normah M. N. Recovery medium and size of embryonic axes for cryopreservation of Fortunella polyandra. In: Sinniah U. R.; Ahmad I.; Madom M. S.; Doss C.; Chandrabalan D.; Normah M. N.; Chin H. F. (eds) Proceedings 5th National Seed Symposium, Current trends towards quality planting materials. Universiti Putra Malaysia, Serdang, pp 177–180; 2009.Google Scholar
  2. Benson E. E. Cryopreservation of phytodiversity: a critical appraisal of theory & practice. Crit Rev Plant Sci 27(3): 141–219; 2008.CrossRefGoogle Scholar
  3. Benson E. E.; Jonston J.; Mutusamy J.; Harding K. Physical and engineering perspectives of in vitro plant cryopreservation. In: Gupta S.; Ibaraki Y. (eds) Plant tissue culture engineering. Springer, Netherlands, pp 441–476; 2006.CrossRefGoogle Scholar
  4. Bonato D. A systems biology analysis of protein–protein interactions between yeast superoxide dismutases and DNA repair pathways. Free Radic Biol Med 43: 557–567; 2007.CrossRefGoogle Scholar
  5. Carpentier S. C.; Witters E.; Laukens K.; Deckers C.; Swennen R.; Panis B. Preparation of protein extracts from recalcitrant plant tissue: an evaluation of different methods for two-dimensional electrophoresis analysis. Proteomics 5: 2497–2507; 2005.PubMedCrossRefGoogle Scholar
  6. Carpentier S. C.; Witters E.; Laukens K.; Van Onckelen H.; Swennen R.; Panis B. Banana (Musa spp.) as a model to study the meristem proteome: acclimation to osmotic stress. Proteomics 7: 92–105; 2007.PubMedCrossRefGoogle Scholar
  7. Chandrabalan D.; Normah M. N.; Mahani M. C. Two-step preconditioning—a feasible method for cryopreservation of Fortunella polyandra shoot tips using vitrification technique. 1st International Symposium Cryopreservation in Horticultural Species. Leuven, Belgium, p 110; 2009.Google Scholar
  8. Chew P. C.; Mardaleni M.; Normah M. N.; Clyde M. M. Activated charcoal is crucial for successful micropropagation of rambutan (Nephelium lappaceum L.). Malays Appl Biol 37(1): 11–20; 2008.Google Scholar
  9. Chin H. F. Strategies for conservation of recalcitrant species. In: Normah M. N.; Narimah M. K.; Clyde M. M. (eds) In vitro conservation of plant genetic resources. Percetakan Watan Sdn. Bhd, Kuala Lumpur, pp 203–215; 1996.Google Scholar
  10. Chin H. F.; Roberts E. H. Recalcitrant crop seeds. Tropical Press, Kuala Lumpur; 1980.Google Scholar
  11. Chmielarz P.; Michalak M.; Palucka M.; Koziol C. Cryopreservation of Quercus robur plumules. 1st International Symposium Cryopreservation in Horticultural Species. Leuven, Belgium, p 46; 2009.Google Scholar
  12. Cho E. G.; Hor Y. L.; Kim H. H.; Rao V. R.; Engelmann F. Cryopreservation of Citrus madurensis zygotic embryonic axes by vitrification: importance of pregrowth and preculture conditions. CryoLetters 22: 391–396; 2001.PubMedGoogle Scholar
  13. Cho E. G.; Kim H. H.; Baek H.-J.; Gwang J.-G.; Normah M. N. Cryopreservation of Citrus medica seeds. J Korean Soc Hort Sci 44(5): 565–568; 2003.Google Scholar
  14. Cho E. G.; Normah M. N.; Kim H. H.; Rao V. R.; Engelmann F. Cryopreservation of Citrus aurantifolia seeds and embryonic axes using a desiccation protocol. CryoLetters 23: 309–316; 2002.PubMedGoogle Scholar
  15. Choo W. K. (2010) In vitro culture and conservation through cryopreservation and slow growth of Nephelium lappaceum L. M.Sc. thesis, Faculty of Science & Technology, Universiti Kebangsaan Malaysia.Google Scholar
  16. Efendi D.; Litz R. E. (2003) Cryopreservation of avocado. Proceedings V World Avocado Congress, Malaga, Spain, 19–24 October, pp 111–114.Google Scholar
  17. Engelmann F. Cryopreservation for long-term conservation of agrobiodiversity: progress and prospects. Universiti Kebangsaan Malaysia, Bangi, INBIOSIS; 2009.Google Scholar
  18. Fadda A.; Fierro A. C.; Lemmens K.; Monsieurs P.; Engelen K.; Marchal K. Inferring the transcriptional network of Bacills subtilis. Mol Biosyst 5: 1840–1852; 2009.PubMedCrossRefGoogle Scholar
  19. Fahy G. M.; MacFarlane D. R.; Angell C. A.; Meryman H. T. Vitrification as an approach to cryopreservation. Cryobiology 21: 407–426; 1984.PubMedCrossRefGoogle Scholar
  20. Gonzalez-Arnao M. T.; Juarez J.; Ortega C.; Navarro L.; Duran-Vila N. Cryopreservation of ovules and somatic embryos of citrus using the encapsulation–dehydration technique. CryoLetters 24: 85–94; 2003.PubMedGoogle Scholar
  21. Gonzalez-Arnao M. T.; Panta A.; Roca W. M.; Escobar R. H.; Engelmann F. Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell Tissue Organ Cult 92: 1–13; 2008.CrossRefGoogle Scholar
  22. Hamilton K. N.; Ashmore S. E.; Pritchard H. W. Thermal analysis and cryopreservation of seeds of Australian wild Citrus species (Rutaceae): Citrus australasica. C. inodora and C. garrawayi. CryoLetters 30: 268–279; 2009.Google Scholar
  23. Hong T. D.; Ellis R. H. Interspecific variations in seed storage behaviour within two genera—Coffea and Citrus. Seed Sci Technol 23: 165–181; 1995.Google Scholar
  24. Hor Y. L. (1984) Storage of cocoa (Theobroma cacao) seeds and changes associated with their deterioration. PhD thesis, Universiti Pertanian Malaysia.Google Scholar
  25. Hor Y. L.; Kim Y. J.; Ugap A.; Chabrillange N.; Sinniah U. R.; Engelmann F.; Dussert S. Optimal hydration status for cryopreservation of intermediate oily seeds: Citrus as a case study. Ann Bot 95: 1153–1161; 2005.PubMedCrossRefGoogle Scholar
  26. Hubbard K. E.; Robertson F. C.; Dalchau N.; Webb A. A. R. Systems analyses of circadian networks. Mol Biosyst 5: 502–1511; 2009.CrossRefGoogle Scholar
  27. Kartha K. K.; Leung N. L.; Mroginski L. A. In vitro growth responses and plant regeneration from cryopreserved meristems of cassava (Manihot esculenta Crantz). Zeitschrift für Pflanzenphysiologie 107: 133–140; 1982.Google Scholar
  28. Krishnapillay B. (1989) Towards the development of a protocol for cryopreservation of embryos of a recalcitrant seed (Artocarpus heterophylus Lam.). PhD thesis, Universiti Pertanian Malaysia.Google Scholar
  29. Lambardi M.; Aylin Ozudogru E.; Benelli C. Cryopreservation of embryogenic cultures. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, Dordrecht, pp 177–210; 2008.CrossRefGoogle Scholar
  30. Lambardi M.; Benelli C.; De Carlo A. Advances in the cryopreservation of fruit plant germplasm at the CNR-IVALSA Institute of Florence. Acta Hort 839: 237–243; 2009.Google Scholar
  31. Lloyd G. B.; McCown B. H. Commercially feasible micropropagation of mountain laurel (Kalmia latifolia) by use of shoot tip culture. Proc Int Plant Propagators Soc 30: 421–437; 1980.Google Scholar
  32. Loke S. Y. (1993) Seed characteristics of several Garcinia species. BSc thesis, Faculty of Life Sciences, Universiti Kebangsaan Malaysia.Google Scholar
  33. Makeen A. M. (2006) Physiological aspects of seed dehydration and cryopreservation of selected Citrus taxa. PhD thesis, Faculty of Science & Technology, Universiti Kebangsaan Malaysia.Google Scholar
  34. Makeen A. M.; Normah M. N.; Dussert S.; Clyde M. M. Cryopreservation of whole seeds and excised embryonic axes of Citrus suhuiensis cv. limau langkat in accordance to their desiccation sensitivity. CryoLetters 26(4): 259–268; 2005. doi: 259.PubMedGoogle Scholar
  35. Makeen A. M.; Normah M. N.; Dussert S.; Clyde M. M. Moisture characteristics in relation to total lipid content of the seed of five Citrus taxa using an equilibrium dehydration protocol. Seed Sci Tech 34(2): 453–464; 2006.Google Scholar
  36. Mardaleni M. (2005) In vitro culture and cryopreservation of Nephelium lappaceum and Nephelium ramboutan-ake. MSc thesis, Faculty of Science & Technology, Universiti Kebangsaan Malaysia.Google Scholar
  37. Marzalina M. (1995) Storage of mahogany (Swietenia macrophylla) seeds. PhD thesis, Faculty of Life Sciences, Universiti Kebangsaan Malaysia.Google Scholar
  38. Marzalina M.; Krishnapillay B. Recalcitrant seed biotechnology applications to rain forest conservation. In: Benson E. E. (ed) Plant conservation and biotechnology. Taylor & Francis, London, pp 265–276; 1999.Google Scholar
  39. Marzalina M.; Normah M. N. Cryopreservation techniques for the long-term storage of mahogany (Swietenia macrophylla) seeds. J Tropical Forest Sci 14(4): 525–535; 2002.Google Scholar
  40. Meryman H. T.; Williams R. J. Basic principles of freezing injury to plant cells: natural tolerance and approaches to cryopreservation. In: Kartha K. K. (ed) Cryopreservation of plant cells and organs. CRC, Boca Raton, pp 13–47; 1985.Google Scholar
  41. Mohd Khairul Ezam R. (2007) In vitro culture and cryopreservation of Citrus hystrix. MSc thesis, Faculty of Science & Technology, Universiti Kebangsaan Malaysia.Google Scholar
  42. Muhammad Siddiq Z. A. (2007) In vitro culture and cryopreservation of shoot tips of Nepenthes gracilis. BSc thesis, Faculty of Science & Technology, Universiti Kebangsaan Malaysia.Google Scholar
  43. Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15(3): 473–497; 1962.CrossRefGoogle Scholar
  44. Nadarajan J.; Mansor M.; Krishnapillay B.; Staines H. J.; Benson E. E.; Harding K. Applications of differential scanning calorimetry in developing cryopreservation strategies for Parkia speciosa, a tropical tree producing recalcitrant seeds. CryoLetters 29: 95–110; 2008.PubMedGoogle Scholar
  45. Nadarajan J.; Staines H. J.; Benson E. E.; Marzalina M.; Krishnapillay B.; Harding K. Optimization of cryopreservation for Sterculia cordata zygotic embryos using vitrification techniques. J Tropical Forest Sci 19: 79–85; 2007.Google Scholar
  46. Nor-Azza A. B. (1997) Organogenesis and callus induction of mangosteen (Garcinia mangostana L.). MSc thesis, Faculty of Life Sciences, Universiti Kebangsaan Malaysia.Google Scholar
  47. Normah M. N. (1987) Effects of temperature on rubber (Hevea brasiliensis Muell.-Arg.) seed storage. PhD thesis, Universiti Pertanian Malaysia.Google Scholar
  48. Normah M. N.; Chin H. F.; Hor Y. L. Desiccation and cryopreservation of embryonic axes of Hevea brasiliensis Muell.-Arg. Pertanika 9(3): 299–303; 1986.Google Scholar
  49. Normah M. N.; Clyde M. M.; Cho E. G.; Rao V. R. Ex situ conservation of tropical fruit species. Acta Hort 575: 221–230; 2002.Google Scholar
  50. Normah M. N.; Clyde M. M.; Rao V. R.; Jeevamoney J. (2009) Radiosensitivity and in vitro studies of Citrus suhuiensis. In: Jain SM, Spencer MM (eds) Induced mutation in tropical fruit trees. IAEA-TECDOC-1615, IAEA Vienna, Austria, pp 17–32.Google Scholar
  51. Normah M. N.; Jamilah M. S.; Siti Serimala M. N. Viability studies on seeds and embryonic axes of Lansium domesticum Corr. Malays. Appl Biol 25(2): 39–43; 1996.Google Scholar
  52. Normah M. N.; Laili Nordaini O. (1994) Cryoexposure behaviour in several Citrus species. In: Koh CL (ed) Proceedings of the First National Congress on Genetics, Kuala Lumpur, 7–8 November, pp 209–211.Google Scholar
  53. Normah M. N.; Mainah G. (1996) Cryopreservation of rambai using encapsulation–dehydration and vitrification of embryonic axes. Proceedings of 4th Symposium of Applied Biology, Kuala Lumpur, 28–29 May, pp 88–90.Google Scholar
  54. Normah M. N.; Makeen A. M. Cryopreservation of excised embryos and embryonic axes. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, Dordrecht, pp 211–240; 2008.CrossRefGoogle Scholar
  55. Normah M. N.; Marzalina M. Achievements and prospects of in vitro conservation for tree germplasm. In: Normah M. N.; Narimah M. K.; Clyde M. M. (eds) In vitro conservation of plant genetic resources. Plant Biotechnology Laboratory, UKM, Bangi, pp 253–261; 1996.Google Scholar
  56. Normah M. N.; Nor-Azza A. B.; Aliudin R. Factors affecting in vitro shoot proliferation and ex vitro establishment of mangosteen (Garcinia mangostana L.). Plant Cell Tissue Organ Cult 43(3): 291–294; 1995.Google Scholar
  57. Normah M. N.; Ramiya S. D.; Gintangga M. Desiccation sensitivity of recalcitrant seeds—a study on tropical fruit species. Seed Sci Res 7: 179–183; 1997.CrossRefGoogle Scholar
  58. Normah M. N.; Siti Dewi Serimala S. D. Cryopreservation of seeds and embryonic axes of several Citrus species. In: Ellis R. H.; Black M.; Murdoch A. J.; Hong T. D. (eds) Basic and applied aspects of seed biology. Kluwer, Dordrecht, pp 817–823; 1997.Google Scholar
  59. Normah M. N.; Tan B. S. (2000) Cryoexposure of in vitro shoot tips of mangosteen—effects of sucrose and desiccation. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. JIRCAS, Tsukuba/IPGRI, Rome, Italy, 20–23 October, pp 431–433.Google Scholar
  60. Normah M. N.; Vengadasalam M. Effects of moisture content on cryopreservation of Coffea and Vigna seeds and embryos. CryoLetters 13: 199–208; 1992.Google Scholar
  61. Padilla G.; Moon P.; Perea I.; Litz R. E. Cryopreservation of embrygenic cultures of ‘brewster’ litchi (Litchi chinensis Sonn.) and its effect on hyperhydric embryogenic cultures. CryoLetters 30: 55–63; 2009.PubMedGoogle Scholar
  62. Pammenter N. W.; Berjak P. A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanism. Seed Sci Res 9: 13–37; 1999.Google Scholar
  63. Panis B. (2009) Cryopreservation of Musa germplasm, 2nd edition, technical guidelines no. 9. In: Engelmann F.; Benson E. (eds) Biodiversity International, Montpellier, France, 48 pp.Google Scholar
  64. Panis B.; Lambardi M. Status of cryopreservation technologies in plants (crops and forest trees). Proceedings of the International Workshop on the Role of Biotechnology for the Characterisation and Conservation of Crop, Forestry, Animal and Fishery Genetic Resources. FAO, Rome, Italy, pp 43–54; 2005.Google Scholar
  65. Panis B.; Piette B.; Swennen R. Droplet vitrification of apical meristem: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168: 45–55; 2005.CrossRefGoogle Scholar
  66. Rahim A. (1997) In vitro culture of mangosteen (Garcinia mangostana L.). MSc thesis, Faculty of Life Sciences, Universiti Kebangsaan Malaysia.Google Scholar
  67. Roca W. M.; Debouck D.; Escobar R. H.; Mafla G.; Fregene M. (2000) Cryopreservation and cassava germplasm conservation at CIAT. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. JIRCAS, Tsukuba/IPGRI, Rome, Italy, 20–23 October, pp 273–279.Google Scholar
  68. Sakai A.; Kobayashi S.; Oiyama I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9: 30–33; 1990.CrossRefGoogle Scholar
  69. Steponkus P. L.; Langis R.; Fujikawa S. Cryopreservation of plant tissues by vitrification. In: Steponkus P. L. (ed) Advances in low temperature biology, vol. 1. JAI, Hampton, pp 1–61; 1992.Google Scholar
  70. Uchendu E. E.; Leonard S. W.; Traber M. G.; Reed B. M. Vitamin C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep 29: 25–35; 2009.PubMedCrossRefGoogle Scholar
  71. Withers L. A.; Engelmann F. In vitro conservation of plant genetic resources. In: Altman A. (ed) Biotechnology in agriculture. Marcel Dekker, New York, pp 57–88; 1997.CrossRefGoogle Scholar
  72. Wu Y.; Huang X.; Xiao J.; Li X.; Zhou M.; Engelmann F. Cryopreservation of mango (Mangifera indica L.) embryogenic cultures. CryoLetters 24: 303–314; 2003.PubMedGoogle Scholar
  73. Yap L. V. (2004) Micropropagation and cryopreservation of Lansium domesticum and Garcinia cowa. PhD thesis, Faculty of Science & Technology, Universiti Kebangsaan Malaysia.Google Scholar
  74. Yap L. V.; Liew K. E.; Chua S. P. (2009) Effects of sucrose preculture on the survival of zygotic embryos of recalcitrant minor fruits after air desiccation—a preliminary study towards cryopreservation of the species. In: Moneef Z, Lina JD, Fatimah CA, Yap LV, Yashotha S, Hasdianty A (eds) Proceedings of the 17th IAS conference, Shah Alam, Malaysia, 14–17 December, pp 165–167.Google Scholar
  75. Zian Nur Juliana Z. A.; Choo W. K.; Normah M. N. (2006) Cryopreservation of shoot tips of Nepenthes gracilis. In: Clyde MM (ed) Proceedings 8th National Biology Symposium, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia, 5–6 December, pp 7–12.Google Scholar

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  • Normah M. Noor
    • 1
    • 2
    Email author
  • Choo Wee Kean
    • 1
    • 2
  • Yap Lip Vun
    • 2
    • 3
  • Zeti Azura Mohamed-Hussein
    • 1
    • 2
  1. 1.Institute of Systems Biology (INBIOSIS)Universiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.School of Biosciences and Biotechnology, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Faculty of Biotechnology and Life SciencesUniversiti Industri SelangorShah AlamMalaysia

Personalised recommendations