Advertisement

Somatic embryogenesis and plant regeneration in oil palm using the thin cell layer technique

  • Jonny E. Scherwinski-Pereira
  • Rodrigo S. da Guedes
  • Paulo César P. FerminoJr
  • Tatiane L. Silva
  • Frederico Henrique S. Costa
Morphogenesis

Abstract

An efficient procedure has been developed for inducing somatic embryogenesis and regeneration of plants from tissue cultures of oil palm (Elaeis guineensis Jacq.). Thin transverse sections (thin cell layer explants) of different position in the shoot apex and leaf sheath of oil palm were cultivated in Murashige and Skoog (MS) (Physiol Plant 15:473–497, 1962) medium supplemented with 0–450 µM picloram and 2,4-D with 3.0% sucrose, 500 mg L−1 glutamine, and 0.3 g L−1 activated charcoal and gelled with 2.5 g L−1 Phytagel. Embryogenic calluses were evaluated 12 wk after inoculation. Picloram (450 µM) was effective in inducing embryogenic calluses in 41.5% of the basal explants. Embryogenic calluses were maintained on a maturation medium composed of basal media, plus 0.6 µM NAA and 12.30 µM 2iP, 0.3 g L−1 activated charcoal, and 500 mg L−1 glutamine, with subcultures at 4-wk intervals. Somatic embryos were converted to plants on MS medium with macro- and micronutrients at half-strength, 2% sucrose, and 1.0 g L−1 activated charcoal and gelled with 2.5 g L−1 Phytagel.

Keywords

Elaeis guineensis Oil palm Somatic embryogenesis Morphogenesis Micropropagation 

Notes

Acknowledgment

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, Brasília, Brazil, for financial support and fellowships.

References

  1. Aberlenc-Bertossi F.; Noirot M.; Duval Y. BA enhances the germination of oil palm somatic embryos derived from embryogenic suspension cultures. Plant Cell Tissue Organ Cult 56: 53–57; 1999.CrossRefGoogle Scholar
  2. Anitha K.; Sajini K. K. Plantlet regeneration from leaf explants of oil palm. Curr Sci 71: 922–926; 1996.Google Scholar
  3. Bandyopadhyay S.; Hamill J. D. Ultrastructural studies of somatic embryos of Eucalyptus nitens and comparisons with zygotic embryos found in mature seeds. Ann Bot 86: 237–244; 2000.CrossRefGoogle Scholar
  4. Barcelos E. Características genético-ecológicas de populações naturais de caiaué (Elaeis oleifera H.B.K.) na Amazônia brasileira. Thesis: Instituto Nacional de Pesquisas da Amazônia; 1986Google Scholar
  5. Bergamin Filho A.; Amorin I.; Laranjeira F. F.; Berger R. D.; Hau B. Análise temporal do amarelecimento fatal do dendezeiro como ferramenta para elucidar sua etiologia. Fitopatologia Brasileira 23: 391–396; 1998.Google Scholar
  6. Duval Y.; Durand-Gasselin T.; Konan K.; Pannetier C. In vitro vegetative propagation of oil palm (Elaeis guineensis Jacq.). Oléagineux 43: 45–47; 1988.Google Scholar
  7. Fehér A.; Pasternak T. P.; Dudits D. Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74: 201–228; 2003.CrossRefGoogle Scholar
  8. Geldner N.; Hamann T.; Jurgens G. Is there a role for auxin in early embryogenesis? Plant Growth Regul. 32: 187–191; 2000.CrossRefGoogle Scholar
  9. Graille J.; Pina M. The role of palm oil in the human diet. Plant Recherché Dev 6: 91–93; 1999.Google Scholar
  10. Guerra M. P.; Torres A. C.; Teixeira J. B. Embriogênese somática e semente sintética. In: Torres A. C.; Caldas L. S.; Buso J. A. (ed.) Cultura de Tecidos e Transformação Genética de Plantas. Embrapa-SPI/CNPH, Brasília, pp. 533–568; 1999.Google Scholar
  11. Hardon J. J.; Rao V.; Rajanaidu N. A review of oil-palm breeding. In: Russell G. E. (ed) Progress in plant breeding. Butterworths, London, pp 139–163; 1985.Google Scholar
  12. Kanchanapoom K.; Domyoas P. The origin and development of embryoids in oil palm (Elaeis guineensis Jacq.) embryo culture. Science Asia 25: 193–200; 1999.CrossRefGoogle Scholar
  13. Konan E. E.; Durand-Gasselin T.; Kouadio J. Y.; Flori A.; Rival A. A modeling approach of the in vitro conversion of oil palm (Elais guineensis) somatic embryos. Plant Cell Tissue Organ Cult 84: 99–112; 2006.CrossRefGoogle Scholar
  14. Ledo A. S.; Lameira A. O.; Benbadis A. K.; Menezes I. C.; Oliveira M.; Medeiros Filho S. Somatic embryogenesis from zygotic embryos of Euterpe edulis Mart. Rev Bras Frutic 24: 601–603; 2002.Google Scholar
  15. Maizura I.; Rajanaidu N.; Zakri A. H.; Cheah S. C. Assessment of genetic diversity in oil palm (Elaeis guineensis Jacq.) using restriction fragment length polymorphism (RFLP). Genet Resour Crop Evol 53: 187–195; 2006.CrossRefGoogle Scholar
  16. Merkle A. S.; Parrott W. A.; Flinn B. S. Morphogenic aspects of somatic embryogenesis. In: Thorpe T. A. (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 155–203; 1995.Google Scholar
  17. Moretzsohn M. C.; Ferreira M. A.; Amaral Z. P. S.; Coelho P. J. A.; Grattapaglia D.; Ferreira M. E. Genetic diversity of Brazilian oil palm (Elaeis oleifera H.B.K.) germplasm collected in the Amazon Forest. Euphytica 124: 35–45; 2002.CrossRefGoogle Scholar
  18. Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497; 1962.CrossRefGoogle Scholar
  19. Namasivayam P. Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tissue Organ Cult 90: 1–8; 2007.CrossRefGoogle Scholar
  20. Nhut D. T.; Silva J. A. T.; Aswath C. R. The importance of the explants on regeneration in thin cell layer technology. In Vitro Cell Dev Biol Plant 39: 266–276; 2003.Google Scholar
  21. Nwankwo B. A.; Krikorian A. D. Morphogenetic potential of embryo and seedling-derived callus of Elaeis guineensis Jacq. Var. psifera Becc. Ann Bot 51: 65–76; 1983.Google Scholar
  22. Pannetier C.; Arthuis P.; Liévoux C. Néoformation de jeunes plants de Elaeis guineensis à partir de cals primaires obtenus sur fragments foliares cultivés in vitro. Oléaginoux 36: 119–122; 1981.Google Scholar
  23. Paranjothy K.; Othman R. In vitro propagation of oil palm. In: Fugiwara A. (Ed) Plant Tissue Culture. Proceeding 5th International Congress of Plant Tissue and Cell Culture. Tokyo, pp. 747–748; 1982.Google Scholar
  24. Parajothy K.; Rohani O.; Tarmizi A. H.; Tan C. C. Current status and strategies of oil palm tissue culture research. PORIM, Int. Palm Oil Development Conference, Malaysia, pp. 109–121; 1989Google Scholar
  25. Rabechault H.; Ahee J.; Guenin G. Recherches sur la culture in vitro des embryos de palmier a huile (Elaeis guineensis Jacq.). XII. Effects de substances de croissance a des doses supraoptimales. Relation avec le brunissement des tissues. Oleagineux 31: 159–163; 1976.Google Scholar
  26. Raemakers C. J. J. M.; Jacobsen E.; Visser R. G. F. Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81: 93–107; 1995.CrossRefGoogle Scholar
  27. Rajesh M. K.; Radha E.; Karun A.; Parthasarathy V. A. Plant regeneration from embryo-derived callus of oil palm—the effect of exogenous polyamines. Plant Cell Tissue Organ Cult 75: 41–47; 2003.CrossRefGoogle Scholar
  28. Rao P. S.; Ganapathi, T. R. Micropropagation of palms. In: Ahuja M. R. (ed) Micropropagation of woody plants. Springer, Berlin, pp 405–421; 1993.Google Scholar
  29. Renard J. L.; Noiret J. M.; Meunier J. Sources and ranges of resistance to Fusarium wilt in the oil palm Elaeis guineesis and Elaeis melanococca. Oléagineux 35: 387–392; 1980.Google Scholar
  30. Rival A.; Berlenc F. A.; Morcillo F.; Tregear J.; Verdeil J. L.; Duval Y. Scaling-up in vitro clonal propagation through somatic embryogenesis: the case of oil palm (Elaeis guineensis Jacq). Plant Cell Tissue Organ Cult 3: 74–83; 1997.Google Scholar
  31. Rival A.; Bertrand L.; Beulé T.; Trouslot P.; Lashermes P. Suitability of RAPD analysis for the detection of somaclonal variants in oil palm (Elaeis guineensis Jacq.). Plant Breeding 117: 73–76; 1998.CrossRefGoogle Scholar
  32. Saaidi M. Comportement au champ de 32 cultivars de palmier dattier vis-à-vis du bayoud: 25 années d’observations. Agronomie 12: 359–370; 1992.CrossRefGoogle Scholar
  33. Samosir Y. M. S.; Godwin I. D.; Adkins S. W. An improved protocol for somatic embryogenesis in coconut (Cocos nucifera L.). Acta Horticult. 461: 467–474; 1998.Google Scholar
  34. Sané D.; Aberlenc-Bertossi F.; Gassama-Dia Y. K.; Sagna M.; Trouslot M. F.; Duval Y.; Borgel A. Histocylogical analysis of callogenesis and somatic embryogenesis from cell suspension of date palm (Phoenix dactylifera). Ann Bot 98: 301–308; 2006.CrossRefPubMedGoogle Scholar
  35. Santos M. M. Polimorfismo isoenzimático de população subspontânea de dendê (E. guineensis Jacq.) do estado da Bahia e sua relação genética com seis procedências africanas. PhD Thesis. Universidade de São Paulo; 1991.Google Scholar
  36. Schwendiman J.; Pannetier C.; Michaux-Ferriere N. Histological of somatic embryogenesis from leaf explants of the oil palm Elaeis guineensis. Ann Bot 62: 43–52; 1988.Google Scholar
  37. Silva J. A. T. Thin cell layer technology in ornamental plant micropropagation and biotechnology. Afr J Biotech 2: 683–691; 2003.Google Scholar
  38. Sogeke A. K. Rapid callus proliferation, somatic embryogenesis and organogenesis of oil palm (Elaeis guineensis Jacq.). Elaeis 8: 92–103; 1996.Google Scholar
  39. Soh A. C. Expected yield increase with selected oil palm clones from current seedling material. Oleagineux 41: 51–56; 1986.Google Scholar
  40. Steinmacher D. A.; Krohn N. G.; Dantas A. C. M.; Stefenon V. M.; Clement C. R.; Guerra M. P. Somatic embryogenesis in peach palm using the thin cell layer technique: Induction, morpho-histological aspects and AFLP analysis of somaclonal variation. Ann Bot 49: 1–11; 2007.Google Scholar
  41. Tarmizi A. H.; Norjihan M. A.; Zaiton R. Multiplication of oil palm suspension cultures in a bench-top (2-litre) bioreactor. J Oil Palm Res 16: 44–49; 2004.Google Scholar
  42. Teixeira J. B.; Sondahl M. R.; Kirby E. G. Somatic embryogenesis from immature zygotic embryos of oil palm. Plant Cell Tissue Organ Cult 34: 227–233; 1993.CrossRefGoogle Scholar
  43. Teixeira J. B.; Sondahl M. R.; Kirby E. G. Somatic embryogenesis from immature inflorescences of oil palm. Plant Cell Rep 13: 247–250; 1994.CrossRefGoogle Scholar
  44. Van Tran Thanh K. Direct flower neoformation from superficial tissue of small explants of Nicotiana tabacum L. Planta 115: 87–90; 1974.Google Scholar
  45. Valverde R.; Arias O.; Thorpe T. A. Picloran-induced somatic embryogenesis in pejibaye palm (Bactris gasipaes HBK). Plant Cell Tissue Organ Cult 10: 149–156; 1987.CrossRefGoogle Scholar
  46. Vasic D.; Alibert G.; Skoric D. Protocols for efficient repetitive and secondary somatic embryogenesis in Helianthus maximiliani (Schrader). Plant Cell Rep 20: 121–125; 2001.CrossRefGoogle Scholar
  47. Williams E. G.; Maheswaran G. Somatic embryogenesis: factors influencing coordinated behavior of cells as an embryogenic group. Ann Bot 57: 443–462; 1986.Google Scholar
  48. Zeven A. C. On the origin of the oil palm. Grana palynologica 5: 121–123; 1964.CrossRefGoogle Scholar
  49. Zonta E. P.; Machado A. A. SANEST—Sistema de Análise Estatística para Microcomputadores. Universidade Federal de Pelotas, Pelotas; 1984.Google Scholar

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  • Jonny E. Scherwinski-Pereira
    • 1
  • Rodrigo S. da Guedes
    • 2
  • Paulo César P. FerminoJr
    • 2
  • Tatiane L. Silva
    • 3
  • Frederico Henrique S. Costa
    • 4
  1. 1.Embrapa Genetic Resources and BiotechnologyLaboratory of Tissue Culture and Plant ConservationBrasíliaBrazil
  2. 2.Department of Plant ScienceFederal University of AcreRio BrancoBrazil
  3. 3.Department of BiotechnologyFederal University of AmazonasManausBrazil
  4. 4.Department of Plant ScienceFederal University of LavrasLavrasBrazil

Personalised recommendations