Skip to main content

Advertisement

Log in

In vitro propagation of the wild carrot Daucus carota L. subsp. halophilus (Brot.) A. Pujadas for conservation purposes

  • Micropropagation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Daucus carota subsp. halophilus, is a wild crop relative of domestic carrot. It is an aromatic plant widely used in folk medicine due to recognized therapeutic properties of its essential oils. Experiments were carried out to evaluate the potential of in vitro propagation techniques to the conservation of this endemic and endangered taxon. The results showed that shoot tips of in vitro germinated seeds were able to proliferate in the presence of benzyladenine, with the best results being achieved using 4.4 µM, both in the first and second cultures. Shoots rooted after being transferred to 1/2-Murashige and Skoog basal medium. The results indicated that the concentration of benzyladenine used during the multiplication phase did not interfere with the rate of root formation. The obtained plantlets were morphologically and anatomically identical to those obtained by seeds. Some of the in vitro produced shoots developed flowers that produced viable pollen. Plant regeneration was also achieved by somatic embryogenesis induction in cotyledons and root segments cultured in the presence of 4.5 µM 2,4-dichlorophenoxyacetic acid. Somatic embryos converted into plantlets in a medium without growth regulators. Plants obtained either by shoot proliferation or somatic embryogenesis were acclimatized and are now growing at the Coimbra Botanical Garden. The first attempts to reintroduce these plants in the original habitat were successful. It can be concluded that the protocols developed are a useful approach to the conservation of this endemic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Almeida R.; Gonçalves S.; Romano A. In vitro micropropagation of endangered Rhododendron ponticum L. subsp. baeticum (Boisson & Reuter) Handel-Mazzeti. Biodivers. Conserv. 14: 1059–1069; 2005.

    Article  Google Scholar 

  • Bajaj Y. P. S. Somatic hybridization—a rich source of genetic variability. In: Bajaj Y. P. S. (ed) Biotechnology in agriculture and forestry, vol 27. Somatic hybridization in crop improvement I. Springer, Berlin, pp 3–32; 1994.

    Google Scholar 

  • Bennett I. J.; McComb J. A.; Tonkin C. M.; McDavid D. A. J. Alternating cytokinins in multiplication media stimulates in vitro shoot growth and rooting of Eucalyptus globulus Labill. Ann. Bot. 74: 53–58; 1994.

    CAS  PubMed  Google Scholar 

  • Brown D. C. W.; Finstad K. I.; Watson E. M. Somatic embryogenesis in herbaceous dicots. In: Thorpe T. A. (ed) In vitro embryogenesis in plants, vol. 1. Kluwer, Dordrecht, pp 345–415; 1995.

    Google Scholar 

  • Canhoto J. M.; Cruz G. S. Improvement of somatic embryogenesis in Feijoa sellowiana Berg. (Myrtaceae) by manipulation of culture media composition. In Vitro Cell. Dev. Biol. Plant 30: 21–25; 1994.

    Google Scholar 

  • Chawla H. S. Introduction to plant biotechnology. 2nd ed. Science, Enfield; 2002.

    Google Scholar 

  • Cruz G. S.; Canhoto J. M.; Abreu M. A. Somatic embryogenesis and plant regeneration from zygotic embryos of Feijoa sellowiana Berg. Plant Sci. 66: 263–270; 1990.

    Article  CAS  Google Scholar 

  • Dobson A. P. Conservation and biodiversity. Scientific American Library, New York; 1998.

    Google Scholar 

  • Ekiert H. Medicinal plant biotechnology: Apiaceae family as example of rapid development. Pharmazie 55: 561–567; 2000.

    CAS  PubMed  Google Scholar 

  • Engelmann F. In vitro conservation of horticultural genetic resources: review of the state of the art. Acta Hortic. 495: 245–250; 1999.

    Google Scholar 

  • Engelmann F. Plant cryopreservation: progress and prospects. In Vitro Cell. Dev. Biol. Plant 40: 427–433; 2004.

    Article  Google Scholar 

  • Engels J. M. M. Plant genetic resources management and conservation strategies: problems and progress. Acta Hortic. 623: 179–191; 2003.

    Google Scholar 

  • Gaudeul M.; Naciri-Graven Y.; Gauthier P.; Pompanon F. Isolation and characterization of microsatellites in a perennial Apiaceae, Erygium alpinum L. Mol. Ecol. Notes 2: 107; 2002.

    Article  CAS  Google Scholar 

  • Geneve R. L.; Kester S. T.; Pomper K. W. Cytokinin habituation for autonomous shoot initiation in pawpaw. Acta Hortic. 738: 371–374; 2007.

    CAS  Google Scholar 

  • George E. F.; Debergh P. C. Micropropagation: uses and methods. In: George E. F.; Hall M. A.; De Klerk G.-J. (eds) Plant propagation by tissue culture. 3rd ed. Springer, Dordrecht, pp 29–64; 2008.

    Google Scholar 

  • Giménez E.; Melendo M.; Valle F.; Gómez-Mercado F.; Cano E. Endemic flora biodversity in the south of the Iberian Peninsula: altitudinal distribution, life forms and dispersal modes. Biodivers. Conserv. 13: 2641–2660; 2004.

    Article  Google Scholar 

  • Gonçalves S.; Romano A. Micropropagation of Drosophyllum lusitanicum (Dewy pine), an endangered West Meditarranean endemic insectivorous plant. Biodivers. Conserv. 14: 1071–1081; 2005.

    Article  Google Scholar 

  • Graudal L.; Thomson L.; Kjaer E. Selection and management of in situ gene conservation areas for target species. In: FAO, DFS, IPGRI (ed) Forest genetic resources conservation and management, vol 2. In managed natural forests and protected areas (in situ). International Plant Genetic Resources Institute, Rome, pp 5–12; 2001.

    Google Scholar 

  • Handro W.; Floh E. I. S. Neo-formation of flower buds and other morphogenetic responses in tissue cultures of Melia azedarach. Plant Cell Tissue Organ Cult. 64: 73–76; 2001.

    Article  CAS  Google Scholar 

  • Imani J.; Tran Thi L.; Langen G.; Arnholdt-Schmitt B.; Roy S.; Lein C.; Kumar A.; Neumann K.-H. Somatic embryogenesis and DNA organization of genomes from selected Daucus species. Plant Cell Rep. 20: 537–541; 2001.

    Article  CAS  Google Scholar 

  • Jaramillo S.; Baena M. Ex situ conservation of plant genetic resources: training module. International Plant Genetic Resources Institute, Rome; 2002.

    Google Scholar 

  • Jarvis D. I.; Myer L.; Klemick H.; Guarino L.; Smale M.; Brown A. D. H.; Sadiki M.; Sthapit B.; Hodgkin T. A training guide for in situ conservation on-farm. International Plant Genetic Resources Institute, Rome; 2000.

    Google Scholar 

  • Kareiva P.; Marvier M. Conservation for the people. Sci. Am. 297: 50–57; 2007.

    Article  PubMed  Google Scholar 

  • Kjær E.; Amaral W.; Yanchuk A.; Graudal L. Strategies for conservation of forest genetic resources. In: FAO, DFS, IPGRI (ed) Forest genetic resources conservation and management, vol 1. Overview, concepts and some systematic approaches. International Plant Genetic Resources Institute, Rome, pp 5–24; 2004.

    Google Scholar 

  • Lin C.-S.; Chen C.-T.; Hsiao W.-W.; Chang W.-C. Effects of growth regulators on direct flowering of isolated ginseng buds in vitro. Plant Cell Tissue Organ Cult. 83: 241–244; 2005.

    Article  CAS  Google Scholar 

  • Makunga N. P.; Jäger A. K.; Van Staden J. An improved system for the in vitro regeneration of Thapsia garganica via direct organogenesis—influence of auxins and cytokinins. Plant Cell Tissue Organ Cult. 82: 271–280; 2005.

    Article  CAS  Google Scholar 

  • Maxted N.; Ford-Lloyd B. V.; Jury S. L.; Kell S. P.; Scholten M. A. Towards a definition of a crop wild relative. Biodivers. Conserv. 15: 2673–2685; 2006.

    Article  Google Scholar 

  • Meyers N.; Mittermeier A.; Mittermeier C. G.; da Fonseca G. A. B.; Kent J. Biodiversity hotspots for conservation priorities. Nature 403: 853–858; 2000.

    Article  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Németh G. Induction of rooting. In: Bajaj Y. P. S. (ed) Biotechnology in agriculture and forestry, vol. 1. Springer, Berlin, pp 49–64; 1986.

    Google Scholar 

  • Parker P. F. The endemic plants of metropolitan Portugal, a survey. Bol. Soc. Brot. Sér. 2(53): 943–994; 1981.

    Google Scholar 

  • Pellegrineschi A. The use of biotech for the introgression of new genetic variability in wheat varieties for developing countries. In: Tuberosa R.; Phillips R. L.; Gale M. (eds) Proceedings of the international congress. “In the wake of the double helix: from the green revolution to the gene revolution”, Bologna, May 2003. University of Bologna, Italy; 2005.

    Google Scholar 

  • Pence V. C. The application of biotechnology for the conservation of endangered species. In: Benson E. E. (ed) Plant conservation biotechnology. Taylor and Francis, London, pp 227–241; 1999.

    Google Scholar 

  • Pujadas Salvá A. J. El complejo de Daucus carota L (Apiaceae) en la flora Ibérica. An. Jard. Bot. Madr. 59: 368–375; 2002.

    Google Scholar 

  • Pujadas Salvá A. J. Daucus L. In: Nieto Feliner G.; Jury S. L.; Herrero A. (eds) Flora iberica, vol X. Real Jadín Botánico, CSIC, Madrid; 2003.

    Google Scholar 

  • Reinert J. Über die kontrolle der morphogenese und die induktion von adventivembryonene an gewebekulturen aus karotten. Planta 53: 318–333; 1958.

    Article  Google Scholar 

  • Ricketts T. H. Conservative biology and biodiversity. In: Encyclopedia of life sciences. Wiley, New York. http://www.els.net. Cited 25 Apr 2001.

  • Sarasan V. A.; Cripps R.; Ramsay M. M.; Atherton C.; McMichen P. G.; Rowntree J. K. Conservation in vitro of threatened plants—progress in the past decade. Plant Cell Tissue Organ Cult. 42: 206–214; 2006.

    Google Scholar 

  • Sergio L.; Gianni B. Molecular markers based analysis for crop germplasm preservation. Paper presented at the FAO Meeting on the role of biotechnology for the characterisation and conservation of crops, forestry, animal and fishery genetic resources, Turin, Italy, 5–7 March 2005.

  • Steward F. C.; Mapes M. O.; Mears K. Growth and organized development of cultured cells. II. Organization in culture grown freely suspended cells. Am. J. Bot. 45: 705–708; 1958.

    Article  Google Scholar 

  • Tavares A. C.; Gonçalves M. J.; Cavaleiro C.; Cruz M. T.; Lopes M. C.; Canhoto J.; Salgueiro L. Essential oil of Daucus carota subsp. halophilus: composition, antifungal activity and citotoxicity. J. Ethnopharmacol. 119: 129–134; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Thi L. T.; Pleschka E. Somatic embryogenesis of some Daucus species influenced by ABA. J. Appl. Bot. Food Qual. 79: 1–4; 2005.

    CAS  Google Scholar 

  • Thorpe T. A.; Stasolla C. Somatic embryogenesis. In: Bhojwani S. S.; Soh W. Y. (eds) Current trends in the embryology of angiosperms. Kluwer, Dordrecht, pp 279–336; 2001.

    Google Scholar 

  • van Staden J.; Zazimalova E.; George E. F. Plant growth regulators II: cytokinins, their analogues and antagonists. In: George E. F.; Hall M. A.; De Klerk G.-J. (eds) Plant propagation by tissue culture. 3rd ed. Springer, Dordrecht, pp 205–226; 2008.

    Google Scholar 

  • Vitousek P. M.; Mooney H. A.; Luhchenco J.; Melillo J. M. Human domination of Earth’s ecosystems. Science 297: 494–499; 1997.

    Article  Google Scholar 

  • Wilkinson T.; Wetten A.; Prychid C.; Fay M. F. Suitability of cryopreservation for the long-term storage of rare and endangered species: a case history for Cosmos atrosanguineus. Ann. Bot. 91: 65–74; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Zar J. H. Biostatistical analysis. 3rd ed. Prentice Hall, Upper Saddle River; 1996.

    Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Antonio Pujadas Salvá (University of Cordoba, Spain) for the taxonomic certification of the plant material used in the experiments. This work was supported by the Fundação para a Ciência e Tecnologia. We are also grateful to the University of Coimbra for A.C. Tavares’ Ph.D. scholarship (III/05/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge M. Canhoto.

Additional information

Editor: Rida A. Shibli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavares, A.C., Salgueiro, L.R. & Canhoto, J.M. In vitro propagation of the wild carrot Daucus carota L. subsp. halophilus (Brot.) A. Pujadas for conservation purposes. In Vitro Cell.Dev.Biol.-Plant 46, 47–56 (2010). https://doi.org/10.1007/s11627-009-9258-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9258-y

Keywords

Navigation