The economics of current and future biofuels

  • Ling Tao
  • Andy AdenEmail author
Invited Review


This work presents detailed comparative analysis on the production economics of both current and future biofuels, including ethanol, biodiesel, and butanol. Our objectives include demonstrating the impact of key parameters on the overall process economics (e.g., plant capacity, raw material pricing, and yield) and comparing how next-generation technologies and fuels will differ from today’s technologies. The commercialized processes and corresponding economics presented here include corn-based ethanol, sugarcane-based ethanol, and soy-based biodiesel. While actual full-scale economic data are available for these processes, they have also been modeled using detailed process simulation. For future biofuel technologies, detailed techno-economic data exist for cellulosic ethanol from both biochemical and thermochemical conversion. In addition, similar techno-economic models have been created for n-butanol production based on publicly available literature data. Key technical and economic challenges facing all of these biofuels are discussed.


Biofuel Biodiesel Biobutanol Process economics Techno-economic analysis Transportation fuel Ethanol 



NREL would like to thank the US Department of Energy (DOE) Office of the Biomass Program (OBP) for its continued leadership, support, and collaboration in the biofuels arena.


  1. Aden, A.; Ruth, M.; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, R. Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL report NREL/TP-510-32438,; 2002.
  2. Aspen Plus™ Release 2006.5. Aspen Technology, Cambridge, MA2006.Google Scholar
  3. Atsumi S.; Cann A. F.; Connor M. R.; Shen C. R.; Smith K. M.; Brynilden M. P.; Chou K. J. Y.; Hanai T.; Liao J. C. Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Eng 10: 305–311; 2008.CrossRefGoogle Scholar
  4. Atsumi S.; Hanai T.; Liao J. C. Non-fermentative pathway for synthesis of brached-chain higher alcohols as biofuels. Nature 451: 86–89; 2007. doi: 10.1038/nature06450.CrossRefGoogle Scholar
  5. Blaschek H. P.; Ezeji T. C.; Qureshi N. Continuous butanol fermentation and feed starch retrogradation: butanol fermentation sustainability using Clostridium beijerinckii BA101. J. Biotechnol. 115: 179–187; 2005. doi: 10.1016/j.jbiotec.2004.08.010.PubMedCrossRefGoogle Scholar
  6. Bothast R. J.; Schlicher M. A. Biotechnological processes for conversion of corn into ethanol. Appl. Microbiol. Biotechnol. 67: 19–25; 2005. doi: 10.1007/s00253-004-1819-8.PubMedCrossRefGoogle Scholar
  7. BNDES. Sugarcane-based bioethanol: energy for sustainable development/coordination BNDES and CGEE.; 2008
  8. BP Biofuels News. Advanced biofuels, working together, two global leaders are creating the next generation of biofuels.; 2006.
  9. Cleantech News. UK firm plans biobutanol plant in India.; 2008
  10. Cobalt Biofuel News. Cobalt biofuels raises $25 million to commercialize next generation biofuel—biobutanol.; 2008
  11. Dean B.; Dodge T.; Valle F.; Chotani G. Development of biorefineries—technical and economic considerations. Biorefineries—industrial process and products. In: Kamm B.; Gruber P. R.; Kamm M. (eds) Status quo and future directions, vol 1. Wiley-VCH, Weinheim, pp 67–83; 2006.Google Scholar
  12. Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog. Energy Combust. Sci. 31: 466–487; 2005.CrossRefGoogle Scholar
  13. Douglas J. M. Conceptual design of chemical processes. McGraw-Hill, New York. 1989.Google Scholar
  14. EIA. Biodiesel performance, costs and use.; 2004
  15. FO Lichts Ethanol production costs: a worldwide survey, a special study from FO Lichts and Agra CEAS Consulting. Agra Informa, Tunbridge Wells, Kent; 2007.Google Scholar
  16. Gevo News. Gevo, Inc secures cellulosic technology to make advanced biofuel.; 2009.
  17. Graboski M. S.; McCormick R. L. Combustion of fat and vegetable oil derived fuels in diesel engines. Prog. Energy Combust. Sci. 24: 125–164; 1998.CrossRefGoogle Scholar
  18. Hanai T.; Atsumi S.; Liao J. C. Engineered synthesis pathway for isopropanol production in Escherichia coli. App. Environ. Microbiol. 73: 7814–7818; 2007.CrossRefGoogle Scholar
  19. Hass M. J.; McAloon A. J.; Yee W. C.; Foglia T. A. A process model to estimate biodiesel production cost. Biores. Technol. 97: 671–678; 2006.CrossRefGoogle Scholar
  20. Hill J.; Nelson E.; Tilman D.; Polasky S.; Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS 10330: 11206–11210; 2006.PubMedCrossRefGoogle Scholar
  21. Kwiatkowski J. R.; McAloon A. J.; Taylor F. Modeling the process and costs of fuel ethanol production by the corn dry-grind process. Ind. Crops Prod. 233: 288–296; 2006.CrossRefGoogle Scholar
  22. Lin Y.; Blaschek N. P. Butanol production by butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl. Envirol. Microbiol. 45: 966–973; 1983.Google Scholar
  23. Marchal R.; Rebeller M.; Vandecasteele J. P. Direct bioconversion of alkali-pretreated straw using simultaneous enzymatic hydrolysis and acetone butanol production. Biotechnol. Lett. 6: 523–528; 1984.CrossRefGoogle Scholar
  24. Merino S. T.; Cherry J. Progress and challenges in enzyme development for biomass utilization. Adv Biochem Engin Biotechnol 108: 95–120; 2007.Google Scholar
  25. NBB. Estimated US biodiesel production by fiscal year.; 2009
  26. Parekh M.; Formanek J.; Blaschek H. P. Pilot-scale production of butanol by Clostridium beijerinckii BA101 using a low-cost fermentation medium based on corn steep water. Appl. Microbiol. Biotechnol. 51: 152–157; 1999.CrossRefGoogle Scholar
  27. Parekh S. R.; Parekh R. S.; Wayman M. Ethanol and butanol production by fermentation of enzymatically saccharified SO2-prehrdolysed lignocellulosics. Enzyme Microb. Technol. 10: 660–668; 1988.CrossRefGoogle Scholar
  28. Peters M. S.; Timmerhaus K. D. Plant design and economics for chemical engineers. 4th ed. McGraw-Hill, New York; 1991.Google Scholar
  29. Phillips, S.; Aden, A.; Jechura, J.; Dayton, D. Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. National Renewable Energy Laboratory Golden CO. NREL report no TP-510-41168.; 2007.
  30. Qureshi N.; Blaschek N. P. Economics of butanol fermentation using hyper-butanol producing Clostridium beijerinckii BA 101. Food Bioprod. Process. 78: 152–167; 2000.CrossRefGoogle Scholar
  31. Qureshi N.; Lolas A.; Blaschek H. P. Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA 101. J. Ind. Microbiol. Biotechnol. 26: 290–295; 2001.PubMedCrossRefGoogle Scholar
  32. Qureshi N.; Saha B. C.; Cotta M. A. Butanol production from wheat straw hydrolyzate using Clostridium beijerinckii. Bioprocess Biosys. Eng. 30: 419–427; 2007.CrossRefGoogle Scholar
  33. Qureshi N.; Thaddeus C. E. Butanol, a superior biofuel production from agricultural residues (renewable biomass): recent progress in technology. Biofuels Bioproducts Biorefining 2: 319–330; 2008.CrossRefGoogle Scholar
  34. Qureshi N.; Thaddeus C. E.; Ebener J.; Dien B. S.; Cotta M. A.; Blaschek H. P. Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour. Technol. 99: 5915–5922; 2008.PubMedCrossRefGoogle Scholar
  35. Ramey, D.; Yang, S. H. Production of butyric acid and butanol from biomass final report. Work performed under contract no: DE-F-G02-00ER86106 USDOE Morgantown WV; 2004.Google Scholar
  36. Ramirez. E.; Johnston D.; Mcaloon A. J.; Singh V. Enzymatic corn wet milling: engineering process and cost model. Biotechnol. Biofuels 2: 2; 2009.PubMedCrossRefGoogle Scholar
  37. RFA. Changing the climate, ethanol industry outlook. RFA, Washington, DC; 2008.Google Scholar
  38. Rodrigues, A. P. Participação dos fornecedores de cana na cadeia do açúcar e álcool. Congresso Internacional de Tecnologias na Cadeia Produtiva, Concana Uberaba, MG, março de; 2007.Google Scholar
  39. Seabra, J. E. A. Technical-economic evaluation of options for whole use of sugar cane biomass in Brazil. Campinas Faculdade de Engenharia Mecânica Universidade Estadual de Campinas 274p PhD thesis (In portuguese); 2007.Google Scholar
  40. Shapouri, H.; Salassi, M.; Fairbanks, N. The economics feasibility of ethanol production from sugar in the United States. USDA report; 2006Google Scholar
  41. Soni B. K.; Das K.; Ghose T. K. Bioconversin of agrowastes inot acetone butanol. Biotechnol. Lett. 4: 19–22; 1982.CrossRefGoogle Scholar
  42. Spake, A. DuPont develops world’s first advanced biofuel, biobutanol will be a high-energy petroleum alternative.; 2007
  43. TetraVitae Bioscience.; 2009
  44. USDA. USDA’s 2002 ethanol cost-of-production survey. Agricultural Economic Report Number 841; 2002Google Scholar
  45. Wallace, R.; Ibsen, K.; McAloon, A.; Yee, W. Feasibility study for co-locating and integrating ethanol production plants from corn starch and lignocellulosic feedstocks.; 2005
  46. Wooley, R.; Putsche, V. Development of an ASPEN PLUS physical property database for biofuels components. National Renewable Energy Laboratory, Golden CO. NREL report no. MP-425-20685; 1996.Google Scholar
  47. Wooley, R.; Ruth M.; Glassner D.; Sheehan J. Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol. Prog. 155: 794–803; 1999.PubMedCrossRefGoogle Scholar
  48. Zhang Y.; Dube M. A.; McLean D. D.; Kates M. Biodiesel production from waste cooking oil: 2. economic assessment and sensitivity analysis. Bioresour. Technol. 90: 229–240; 2003.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2009

Authors and Affiliations

  1. 1.National Renewable Energy LaboratoryGoldenUSA

Personalised recommendations