Effect of TDZ on plant regeneration from mature seeds in pea (Pisum sativum)

  • S. Zhihui
  • M. Tzitzikas
  • K. RaemakersEmail author
  • M. Zhengqiang
  • R. Visser
Invited Review


Pea (Pisum sativum L. cv. Espace) seeds directly cultured on thidiazuron (TDZ)-containing medium formed high numbers of shoots. The number of shoots per seedling depended on the concentration and duration of the TDZ treatment. The best treatment was 12-wk incubation on MS medium supplemented with 4 mg/l TDZ followed by 4-wk culture on MS medium supplemented with 0.5 mg/l benzylaminopurine (BA) and produced more than 400 shoots/seedling. Isolated shoots rooted at a high frequency on MS medium containing 2–3 mg/l indole-3-butyric acid and 2 mg/l α-naphthalene acetic acid. In addition to the formation of shoots, bud-containing tissues (BCT) were formed at the cotyledonary nodes, shoot nodes, tendrils, stipules, and internodes. The BCT from the cotyledonary nodes and the shoot nodes was maintained in its pure state on MS medium supplemented with 4 mg/l TDZ by repeated culture. Shoot development was accomplished when the BCT were left on MS medium supplemented with 4 mg/l TDZ without subculture prior to transfer onto MS medium supplemented with 0.5 mg/l BA.


Pea (Pisum sativumSeed culture Thidiazuron (TDZ) Multiple shoots Bud-containing tissues (BCT) 



This work was supported by grants from the Chinese Scholarship of Education and the Laboratory of Plant Breeding of Wageningen University.


  1. Avenido, R. A.; Hattori, K. Benzyladenine-preconditioning in germinating mungbean seedlings stimulates axillary buds in cotyledonary nodes resulting in multiple shoot regeneration. Breed Sci. 51: 137–142; 2001. doi: 10.1270/jsbbs.51.137.CrossRefGoogle Scholar
  2. Bean, S. J.; Gooding, P. S.; Mullineaux P. M.; Davies D. R. A simple system for pea transformation. Plant Cell Rep. 16: 513–519; 1997.Google Scholar
  3. Cruz de Carvalho M. H.; Van Le B.; Fodil Z.; Phan T. Y. T.; Van Kiem T. T. Benzyladenine-preconditioning in germinating mungbean seedlings stimulates axillary buds in cotyledonary nodes resulting in multiple shoot regeneration. Breed Sci. 51: 137–142; 2001. doi: 10.1270/jsbbs.51.137.CrossRefGoogle Scholar
  4. Finer J. J.; Nagasawa A. Development of an embryogenic suspension culture of soybean [Glycine max (L.) Merrill]. Plant Cell Tiss. Org. Cult. 15: 125–136; 1988. doi: 10.1007/BF00035754.CrossRefGoogle Scholar
  5. Fratini R.; Ruiz M. L. A rooting procedure for lentil (Lens culinaris Medik.) and other hypogeous legumes (pea, chickpea and lathyrus) based on explant polarity. Plant Cell Rep. 21: 726–732; 2003.PubMedGoogle Scholar
  6. Gagliardi R. F.; Pacheco G. P. In vitro plant regeneration from seed explants of wild groundnut species (Genus Arachis, Section Extranervosae). Biodivers. Conserv. 9: 943–951; 2000. doi: 10.1023/A:1008960608543.CrossRefGoogle Scholar
  7. Grant J. E.; Cooper P. A.; McAra A. E.; Frew T. J. Transformation of peas (Pisum sativum L.) using immature cotyledons. Plant Cell Rep. 15: 254–258; 1995. doi: 10.1007/BF00193730.CrossRefGoogle Scholar
  8. Griga M. Direct somatic embryogenesis from shoot apical meristems of pea, and thidiazuron-induced high conversion rate of somatic embryos. Biol. Plant 41: 481–495; 1988. doi: 10.1023/A:1001834213437.CrossRefGoogle Scholar
  9. Griga M. Morphology and anatomy of Pisum sativum somatic embryos. Biol. Plant 45: 173–182; 2002. doi: 10.1023/A:1015176118719.CrossRefGoogle Scholar
  10. Hong H. P.; Zhang H.; Olhoft P.; Hill S.; Wiley H.; Toren E.; Hildebrand H.; Jones T.; Cheng M. Organogenic callus as the target tissue for plant regeneration and transformation via Agrobacterium in soybean (Glycine max (L.) Merr.). In Vitro Cell Dev. Biol. Plant 43: 558–568; 2007. doi: 10.1007/s11627-007-9066-1.CrossRefGoogle Scholar
  11. Jordan M. C.; Hobbs L. A. Evaluation of a cotyledonary node regeneration system for Agrobacterium-mediated transformation of pea (Pisum sativum L.). In Vitro Cell Dev. Biol. Plant 29: 77–82; 1993. doi: 10.1007/BF02632256.CrossRefGoogle Scholar
  12. Jayanand B.; Sudarsanam G.; Sharma K. K. An efficient protocol for the regeneration of whole plants of chickpea (Cicer arietinum L.) by using axillary meristem explants derived from in vitro-germinated seedlings. In Vitro Cell Dev. Biol. Plant 39: 171–179; 2003. doi: 10.1079/IVP2002387.CrossRefGoogle Scholar
  13. Kallak H.; Koiveer A. Induction of morphogenesis in meristems of different cultivars of Pisum sativum L. Plant Sci. 67: 221–226; 1990. doi: 10.1016/0168-9452(90)90246-K.CrossRefGoogle Scholar
  14. Kartha K. K.; Gamborg O. L.; Constabel F. Regeneration of pea Pisum sativum plants from shoot apical meristems. Z. Pflanzenphysiologie 72: 172–176; 1974.Google Scholar
  15. Le Bui V.; de Carvalho M. H. C.; Yasmine Z. F.; Thi A. T. P.; Van Kiem T. T. Direct whole plant regeneration of cowpea (Vigna unguiculata (L.) Walp) from cotyledonary node thin cell layer explants. J. Plant Physiol. 159: 1255–1258; 2002. doi: 10.1078/0176-1617-00789.CrossRefGoogle Scholar
  16. Loiseau J.; Michaux-Ferriere N.; Le Deunff Y. Histology of somatic embryogenesis. Plant Physiol. Biochem. 36: 683–687; 1998. doi: 10.1016/S0981-9428(98)80017-X.CrossRefGoogle Scholar
  17. Malik K. A.; Saxena P. K. Thidiazuron induces high-frequency shoot regeneration in intact seedlings of pea (Pisum sativum), chickpea (Cicer arietinum) and lentil (Lens culinaris). Aust. J. Plant Physiol. 19: 731–740; 1992a.CrossRefGoogle Scholar
  18. Malik K. A.; Saxena P. K. In vitro regeneration of plants: a novel approach. Naturwissenschaften 79: 136–137; 1992b. doi: 10.1007/BF01131544.CrossRefGoogle Scholar
  19. Mok M. C.; Mok D. W. S. The metabolism of 14C-thidiazuron in callus tissue of Phaseolus lunatus. Physiol. Plant 65: 427–432; 1985. doi: 10.1111/j.1399-3054.1985.tb08668.x.CrossRefGoogle Scholar
  20. Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497; 1962. doi: 10.1111/j.1399-3054.1962.tb08052.x.CrossRefGoogle Scholar
  21. Murthy B. N. S.; Murch S. J.; Saxena P. K. Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev. Biol. Plant 34: 267–275; 1998. doi: 10.1007/BF02822732.CrossRefGoogle Scholar
  22. Nadolska-Orczyk A.; Orczyk W. Study of the factors influencing Agrobacterium-mediated transformation of pea (Pisum sativum L.). Mol. Breed. 6: 185–194; 2000. doi: 10.1023/A:1009679908948.CrossRefGoogle Scholar
  23. Polowick P. L.; Quandt J.; Mahon J. D. The ability of pea transformation technology to transfer genes into peas adapted to western Canadian growing conditions. Plant Sci. 153: 161–170; 2000. doi: 10.1016/S0168-9452(99)00267-8.CrossRefPubMedGoogle Scholar
  24. Schroeder H. E.; Schotz A. H.; Wardley-Richardson T.; Spencer D.; Higgins T. J. V. Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant. Physiol. 101: 751–757; 1993. doi: 10.1104/pp.101.2.451.CrossRefPubMedGoogle Scholar
  25. Shan Z.; Raemakers C. J. J. M.; Tzitzikas E. N.; Ma Z.; Visser R. G. F. Development of a highly efficient, repetitive system of organogenesis in soybean (Glycine max (L) Merr.). Plant Cell Rep. 24: 507–512; 2005. doi: 10.1007/s00299-005-0971-7.CrossRefPubMedGoogle Scholar
  26. Stamp J. A.; Henshaw G. G. Somatic embryogenesis from clonal leaf tissues of cassava. Ann. Bot. 59: 445–450; 1987.Google Scholar
  27. Tzitzikas, E. N. Exploring variation in pea protein composition by natural selection and genetic modification. Ph.D. thesis Wageningen University, ISBN 90-8504-293-3; 2005.Google Scholar
  28. Tzitzikas E. N.; Bergervoet M.; Raemakers C. J. J. M.; Vincken J. P.; van Lammeren A.; Visser R. G. F. Regeneration of pea (Pisum sativum L.) by a cyclic organogenic system. Plant Cell Rep. 23: 453–460; 2004. doi: 10.1007/s00299-004-0865-0.CrossRefPubMedGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2009

Authors and Affiliations

  • S. Zhihui
    • 1
    • 2
  • M. Tzitzikas
    • 1
  • K. Raemakers
    • 1
    • 3
    Email author
  • M. Zhengqiang
    • 2
  • R. Visser
    • 1
  1. 1.Plant Breeding LaboratoryWageningen University and Research CenterWageningenNetherlands
  2. 2.National Key Laboratory of Crops Genetics & Germplasm EnhancementNanjing Agriculture UniversityNanjingChina
  3. 3.Genetwister TechnologiesWageningenNetherlands

Personalised recommendations