Commercial cellulosic ethanol: The role of plant-expressed enzymes

Invited Review

Abstract

The use and production of biofuels has risen dramatically in recent yr. Bioethanol comprises 85% of total global biofuels production, with benefits including reduction of greenhouse gas emissions and promotion of energy independence and rural economic development. Ethanol is primarily made from corn grain in the USA and sugarcane juice in Brazil. However, ethanol production using current technologies will ultimately be limited by land availability, government policy, and alternative uses for these agricultural products. Biomass feedstocks are an enormous and renewable source of fermentable sugars that could potentially provide a significant proportion of transport fuels globally. A major technical challenge in making cellulosic ethanol economically viable is the need to lower the costs of the enzymes needed to convert biomass to fermentable sugars. The expression of cellulases and hemicellulases in crop plants and their integration with existing ethanol production systems are key technologies under development that will significantly improve the process economics of cellulosic ethanol production.

Keywords

Biofuels Cellulosic ethanol Cellulases Pretreatment Biomass Enzymes 

References

  1. Abdeev R. M.; Goldenkova I. V.; Musiychuk K. A.; Piruzian E. S. Expression of a thermostable bacterial cellulase in transgenic tobacco plants. Russ. J. Genet. 393: 376–382; 2003. doi:10.1023/A:1023227802029.CrossRefGoogle Scholar
  2. Aden, A. Biochemical production of ethanol from corn stover: 2007 state of technology model. Technical report NREL/TP-510-43205, National Renewable Energy Laboratory, Golden, CO USA. http://www.nrel.gov/docs/fy08osti/43205.pdf (accessed 8 Jan 2009); 2008.
  3. Aden, A.; Ruth, M.; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, B.; Montague, L.; Slayton, A.; Lukas, J. Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. Technical report NREL/TP-510-32438 (http://www.nrel.gov/docs/fy02osti/32438.pdf (accessed 8 Jan 2009); 2002.
  4. Agbogbo F. K.; Coward-Kelly G. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol. Lett. 30: 1515–1524; 2008. doi:10.1007/s10529-008-9728-z.PubMedCrossRefGoogle Scholar
  5. Almeida J. R. M.; Modig T.; Petersson A.; Hahn-Hagerdal B.; Liden G.; Gorwa-Grauslund M. F. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340–349; 2007. doi:10.1002/jctb.1676.CrossRefGoogle Scholar
  6. Anonymous. Enzyme contract concludes successfully. Ethanol Producer June 2005. http://www.ethanolproducer.com/article.jsp?article_id = 201 (accessed 26 Jan 2009); 2005.
  7. Anonymous. Food prices: fact versus fiction. Biofuels International 2(5). http://biofuels-news.com/content_item_details.php?item_id = 126 (accessed 4 Jan 2009); 2008.
  8. Aspegren K.; Mannonen L.; Ritala A.; Puupponen-Pimia R.; Kurten U.; Salmenkallio-Marttila M.; Kauppinen V.; Teeri T. H. Secretion of a heat-stable fungal β-glucanase from transgenic, suspension-cultured barley cells. Mol. Breed 1: 91–99; 1995. doi:10.1007/BF01682092.CrossRefGoogle Scholar
  9. Berlin A.; Maximenko V.; Gilkes N.; Saddler J. Optimization of enzyme complexes for lignocellulosic hydrolysis. Biotechnol. Bioeng. 972: 287–296; 2007. doi:10.1002/bit.21238.PubMedCrossRefGoogle Scholar
  10. Biswas G. C. G.; Ransom C.; Sticklen M. Expression of biologically active Acidothermus cellulolyticus endoglucanase in transgenic maize plants. Plant Sci. 7: 617–623; 2006. doi:10.1016/j.plantsci.2006.06.004.CrossRefGoogle Scholar
  11. Bock R. Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr. Opin. Biotechnol. 18: 100–106; 2007. doi:10.1016/j.copbio.2006.12.001.PubMedCrossRefGoogle Scholar
  12. Buanafina M. M. O.; Langdon T.; Hauck B.; Dalton S.; Morris P. Expression of a fungal ferulic acid esterase increases cell wall digestibility of tall fescue (Festuca arundinacea). Plant Biotechnol. J. 6: 1–17; 2008. doi:10.1111/j.1467-7652.2007.00317.x.Google Scholar
  13. Carlson S. R.; Rudgers G. W.; Zieler H.; Mach J. M.; Luo S.; Grunden E.; Krol C.; Copenhaver G. P.; Preuss D. Meiotic transmission of an in vitro-assembled autonomous maize minichromosome. PLoS Genet. 310: 1965–1974; 2007. doi:10.1371/journal.pgen.0030179.PubMedCrossRefGoogle Scholar
  14. Carpita N. C.; Defernez M.; Findlay K.; Wells B.; Shoue D. A.; Catchpole G.; Wilson R. H.; McCann M. C. Cell wall architecture of the elongating maize coleoptile. Plant Physiol. 1272: 551–565; 2003. doi:10.1104/pp.010146.CrossRefGoogle Scholar
  15. Carroll A.; Somerville C. Cellulosic biofuels. Annu. Rev. Plant Biol. 60: 165–182; 2009.PubMedCrossRefGoogle Scholar
  16. Chang M. C. Y. Harnessing energy from plant biomass. Curr. Opin. Chem. Biol. 11: 677–684; 2007. doi:10.1016/j.cbpa.2007.08.039.PubMedCrossRefGoogle Scholar
  17. Chapple C.; Ladisch M.; Meilan R. Loosening lignin’s grip on biofuel production. Nat. Biotechnol. 257: 746–748; 2007. doi:10.1038/nbt0707-746.PubMedCrossRefGoogle Scholar
  18. Chen F.; Dixon R. A. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 257: 759–761; 2007. doi:10.1038/nbt1316.PubMedCrossRefGoogle Scholar
  19. Cheryan M.; Mehaia M. A. Ethanol production in a membrane recycle bioreactor. Conversion of glucose using Saccharomyces cerevisiae. Process Biochem. 19: 204–208; 1984.Google Scholar
  20. Coyle, W. The future of biofuels: a global perspective. Amber Waves 5(5). Available online at http://www.ers.usda.gov/AmberWaves/November07/Features/Biofuels.htm (accessed 7 Jan 2009); 2007.
  21. Dai Z.; Hooker B. S.; Anderson D. B.; Thomas S. R. Expression of Acidothermus cellulolyticus endoglucanase E1 in transgenic tobacco, biochemical characteristics and physiological effects. Transgenic Res. 9: 43–54; 2000a. doi:10.1023/A:1008922404834.PubMedCrossRefGoogle Scholar
  22. Dai Z.; Hooker B. S.; Anderson D. B.; Thomas S. R. Improved plant-based production of E1 endoglucanase using potato: expression optimization and tissue targeting. Mol. Breed. 6: 277–285; 2000b. doi:10.1023/A:1009653011948.CrossRefGoogle Scholar
  23. Dai Z.; Hooker B. S.; Quesenberry R. D.; Gao J. Expression of Trichoderma reesei exo-cellobiohydrolase I in transgenic tobacco leaves and calli. Appl. Biochem. Biotechnol. 77–79: 689–699; 1999. doi:10.1385/ABAB:79:1-3:689.PubMedCrossRefGoogle Scholar
  24. Dai Z.; Hooker B. S.; Quesenberry R. D.; Thomas S. R. Optimization of Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translation modification. Transgenic Res. 14: 627–643; 2005. doi:10.1007/s11248-005-5695-5.PubMedCrossRefGoogle Scholar
  25. Doi R. H. Cellulases of mesophilic microorganisms—cellulosome and noncellulosome producers. Ann. N.Y. Acad. Sci. 1125: 267–279; 2008. doi:10.1196/annals.1419.002.PubMedCrossRefGoogle Scholar
  26. Dale, J. L.; Dugdale, B.; Hafner, G. J.; Hermann, S. R.; Becker, D. K. A construct capable of release in closed circular form from a larger nucleotide sequence permitting site specific expression and/or developmentally regulated expression of selected genetic sequences. International Patent Application WO 01/72996 A1; 2001.Google Scholar
  27. Dale, J. L.; Dugdale, B.; Hafner, G. J.; Hermann, S. R.; Becker, D. K.; Harding, R. M.; Chowpongpang, S. Construct capable of release in closed circular form from a larger nucleotide sequence permitting site specific expression and/or developmentally regulated expression of selected genetic sequences. US Patent Application US2004/0121430 A1; 2004.Google Scholar
  28. Dunn-Coleman, N.; Landgon, T.; Morris, P. Manipulation of the phenolic acid content and digestibility of plant cell walls by targeted expression of genes encoding cell wall degrading enzymes. US patent application US2003/0024009 A1; 2001.Google Scholar
  29. Eggeman T.; Elander R. T. Process and economic analysis of pretreatment technologies. Bioresour. Technol. 96: 2019–2025; 2005. doi:10.1016/j.biortech.2005.01.017.PubMedCrossRefGoogle Scholar
  30. Fulton, L.; Howes, T.; Hardy, J. Biofuels for transport—an international perspective. International Energy Agency, Paris, France. Available online at http://www.iea.org/textbase/nppdf/free/2004/biofuels2004.pdf (accessed 23 Jan 2009); 2004.
  31. Galbe M.; Sassner P.; Wingren A.; Zacchi G. Process engineering economics of bioethanol production. Adv. Biochem. Eng. Biotechnol. 108: 303–327; 2007. doi:10.1007/10_2007_063.PubMedGoogle Scholar
  32. Galbe M.; Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv. Biochem. Eng. Biotechnol. 108: 41–65; 2007. doi:10.1007/10_2007_070.PubMedGoogle Scholar
  33. Goldemberg J.; Guardabasi P. Are biofuels a feasible option? Energy Policy 37: 10–14; 2009. doi:10.1016/j.enpol.2008.08.031.CrossRefGoogle Scholar
  34. Graham R. L.; Nelson R.; Sheehan J.; Perlack R. D.; Wright L. L. Current and potential U.S. corn stover supplies. Agron. J. 99: 1–11; 2007. doi:10.1016/S0065-2113(04)92001-9.CrossRefGoogle Scholar
  35. Greer, D. Commercializing Cellulosic Ethanol. Biocycle 49(11):47. Available online at http://www.jgpress.com/archives/_free/001764.html (accessed 4 Jan 2009); 2008.Google Scholar
  36. Gressel J. Transgenics are imperative for biofuel crops. Plant Sci. 174: 246–263; 2008. doi:10.1016/j.plantsci.2007.11.009.CrossRefGoogle Scholar
  37. Herbers K.; Flint H. J.; Sonnewald U. Apoplastic expression of the xylanase and β (1-3,1-4) glucanase domains of the xyn D gene from Ruminococcus flavefaciens leads to functional polypeptides in transgenic tobacco plants. Mol. Breed. 2: 81–87; 1996. doi:10.1007/BF00171354.CrossRefGoogle Scholar
  38. Herbers K.; Wilke I.; Sonnewald U. A thermostable xylanase from Clostidium thermocellum expressed at high levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. Nat. Biotechnol. 13: 63–66; 1995. doi:10.1038/nbt0195-63.CrossRefGoogle Scholar
  39. Himmel M. E.; Ding S.-Y.; Johnson D. K.; Adney W. S.; Nimlos M. R.; Brady J. W.; Foust T. D. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804–807; 2007. doi:10.1126/science.1137016.PubMedCrossRefGoogle Scholar
  40. Ho N. W. Y.; Chen Z.; Brainard A. P. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 645: 1852–1859; 1998.PubMedGoogle Scholar
  41. Hood E. E.; Love R.; Lane J.; Bray J.; Clough R.; Pappu K.; Drees C.; Hood K. R.; Yoon S.; Ahmad A.; Howard J. A. Subcellular targeting is a key condition for high level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol. J. 5: 709–719; 2007. doi:10.1111/j.1467-7652.2007.00275.x.PubMedCrossRefGoogle Scholar
  42. Hooker B. S.; Dai Z.; Anderson D. B.; Quesenberry R. D.; Ruth M. F.; Thomas S. R. Production of microbial cellulases in transgenic crop plants. In: HimmelM. E.; BakerJ.O.; SaddlerJ. N. (eds) Glycosyl hydrolases for biomass conversion. American Chemical Society, Washington, DC, pp 55–90; 2001.Google Scholar
  43. Horvath H.; Huang J.; Wong O.; Kohl E.; Okita T.; Kannagara C. G.; von Wettstein D. The production of recombinant proteins in transgenic barley grains. Proc. Natl. Acad. Sci. U. S. A. 974: 1914–1919; 2000. doi:10.1073/pnas.030527497.PubMedCrossRefGoogle Scholar
  44. Houghton, J.; Weatherwax, S.; Ferrell, J. Breaking the biological barriers to cellulosic ethanol: a joint research agenda. US Department of Energy Office of Science and Office of Energy Efficiency and Renewable Energy 206 pp; 2006.Google Scholar
  45. Hyunjong B.; Lee D.-S.; Hwang I. Dual targeting of a xylanase to chloroplasts and peroxisomes as a means to increase protein accumulation in plant cells. J. Exp. Bot. 571: 161–169; 2006. doi:10.1093/jxb/erj019.PubMedCrossRefGoogle Scholar
  46. Ingram L. O.; Aldrich H. C.; Borges A. C. C.; Causey T. B.; Martinez A.; Morales F.; Saleh A.; Underwood S. A.; Yomano L. P.; York S. W.; Zaldivar J.; Zhou S. Enteric bacterial catalysts for fuel ethanol production. Biotechnol. Prog. 15: 855–866; 1999. doi:10.1021/bp9901062.PubMedCrossRefGoogle Scholar
  47. Jensen L. G.; Olsen O.; Kops O.; Wolf N.; Thomsen K. K.; von Wettstein D. Transgenic barley expressing a protein-engineered, thermostable (1-3,1-4)-β-glucanase during germination. Proc. Natl. Acad. Sci. U. S. A. 93: 3487–3491; 1996. doi:10.1073/pnas.93.8.3487.PubMedCrossRefGoogle Scholar
  48. Jin R.; Richter S.; Zhong R.; Lamppa G. K. Expression and import of an active cellulase from a thermophilic bacterium into the chloroplast both in vitro and in vivo. Plant Mol. Biol. 51: 493–507; 2003. doi:10.1023/A:1022354124741.PubMedCrossRefGoogle Scholar
  49. Jorgensen H.; Kristensen J. B.; Felby C. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod. Biorefin. 1: 119–134; 2007. doi:10.1002/bbb.4.CrossRefGoogle Scholar
  50. Kawazu T.; Ohta T.; Ito K.; Shibata M.; Kimura T.; Saaka K.; Ohmiya K. Expression of a Ruminococcus albus cellulase gene in tobacco suspension cells. J. Ferment. Bioeng. 823: 205–209; 1996. doi:10.1016/0922-338X(96)88809-X.CrossRefGoogle Scholar
  51. Kawazu T.; Sun J.-L.; Shibata M.; Kimura T.; Saaka K.; Ohmiya K. Expression of a bacterial endoglucanase gene in tobacco increases digestibility of its cell wall fibers. J. Biosci. Bioeng. 884: 421–425; 1999. doi:10.1016/S1389-1723(99)80220-5.PubMedCrossRefGoogle Scholar
  52. Kim S.; Dale B. E. Global potential biofuel production from wasted crops and crop residues. Biomass Bioenerg. 26: 361–375; 2004. doi:10.1016/j.biombioe.2003.08.002.CrossRefGoogle Scholar
  53. Kim T. H.; Lee Y. Y. Fractionation of corn stover by hot-water and aqueous ammonia treatment. Bioresour. Technol. 97: 224–232; 2006. doi:10.1016/j.biortech.2005.02.040.PubMedCrossRefGoogle Scholar
  54. Kimura T.; Mizutani T.; Tanaka T.; Koyama T.; Sakka K.; Ohmiya K. Molecular breeding of transgenic rice expressing a xylanase domain of the xynA gene from Clostridium thermocellum. Appl. Microbiol. Biotechnol. 62: 374–379; 2003. doi:10.1007/s00253-003-1301-z.PubMedCrossRefGoogle Scholar
  55. Kline, K. L.; Oladosu, G. A.; Wolfe, A. K.; Perlack, R. D.; Dale, V. H.; McMahon, M. Biofuel feedstock assessment for selected countries. Report ORNL/TM-2007/224 prepared by Oak Ridge National Laboratory for the US Department of Energy (DOE). Available online at http://www.osti.gov/bridge/purl.cover.jsp;jsessionid=FD7D1D5D71C9ACFE53C44AE856766653?purl=/924080-y8ATDg/ (accessed 4 Jan 2009); 2008.
  56. Koonin S. E. Getting serious about biofuels. Science 311: 435; 2006. doi:10.1126/science.1124886.PubMedCrossRefGoogle Scholar
  57. Lavelle, M.; Garber, K. Fixing the food crisis. US News and World Report, May 19 2008, pp 36–42; 2008.Google Scholar
  58. Lebel E. G.; Heifetz P. B.; Ward E. R.; Uknes S. J. Transgenic plant expressing a cellulase. US Patent 7361806 B2; 2008.Google Scholar
  59. Li L.; Zhou Y.; Cheng X.; Sun J.; Marita J. M.; Ralph J.; Chiang V. L. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc. Natl. Acad. Sci. U. S. A. 1008: 4939–4944; 2003. doi:10.1073/pnas.0831166100.PubMedCrossRefGoogle Scholar
  60. Li X.; Weng J.-K.; Chapple C. Improvement of biomass through lignin modification. Plant J. 54: 569–581; 2008. doi:10.1111/j.1365-313X.2008.03457.x.PubMedCrossRefGoogle Scholar
  61. Lin Y.; Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69: 627–642; 2006. doi:10.1007/s00253-005-0229-x.PubMedCrossRefGoogle Scholar
  62. Litzen, D.; Dixon, D.; Gilcrease, P.; Winter, R. Pretreatment of biomass for ethanol production. US Patent Application US2006/0141584 A1; 2006.Google Scholar
  63. Liu J.-H.; Selinger L. B.; Cheng K.-J.; Beauchemin K. A.; Moloney M. M. Plant seed oil-bodies as an immobilization matrix for recombinant xylanase from the rumen fungus Neocallimastix patriciarum. Mol. Breed. 3: 463–470; 1997. doi:10.1023/A:1009604119618.CrossRefGoogle Scholar
  64. Lu Y.; Zhang Y.-H. P.; Lynd L. R. Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc. Natl. Acad. Sci. U. S. A. 10344: 16165–16169; 2006. doi:10.1073/pnas.0605381103.PubMedCrossRefGoogle Scholar
  65. Lynd L. R.; Laser M. S.; Bransby D.; Dale B. E.; Davison B.; Hamilton R.; Himmel M.; Keller M.; McMillan J. D.; Sheehan J.; Wyman C. E. How biotech can transform biofuels. Nat. Biotechnol. 262: 169–172; 2008. doi:10.1038/nbt0208-169.PubMedCrossRefGoogle Scholar
  66. Lynd L. R.; van Zyl W. H.; McBride J. E.; Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16: 577–583; 2005. doi:10.1016/j.copbio.2005.08.009.PubMedCrossRefGoogle Scholar
  67. Martinot, E. et al. Renewables 2007: World Status Report. Renewable energy policy network for the 21st century (REN21) and Worldwatch Institute, Washington, DC, USA. Available online at http://www.worldwatch.org/files/pdf/renewables2007.pdf (accessed 15 Jan 2009); 2007.
  68. McCann M. C.; Carpita N. C. Designing the deconstruction of plant cell walls. Curr. Opin. Plant Biol. 11: 314–320; 2008. doi:10.1016/j.pbi.2008.04.001.PubMedCrossRefGoogle Scholar
  69. Mei C.; Park S. H.; Sabzikar R.; Qi C.; Ransom C.; Sticklen M. Green tissue-specific production of a microbial endo-cellulase in maize (Zea mays L.) endoplasmic-reticulum and mitochondria converts cellulose to fermentable sugars. J. Chem. Technol. Biotechnol 84: 689–695; 2009.CrossRefGoogle Scholar
  70. Merino S. T.; Cherry J. Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol. 108: 95–120; 2007. doi:10.1007/10_2007_066.PubMedGoogle Scholar
  71. Murashima K.; Kosugi A.; Doi R. H. Synergistic effects of cellulosmal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation. J. Bacteriol. 1855: 1518–1524; 2003. doi:10.1128/JB.185.5.1518-1524.2003.PubMedCrossRefGoogle Scholar
  72. Nuutila A. M.; Ritala A.; Skadsen R. W.; Mannonen L.; Kauppinen V. Expression of fungal thermotolerant endo-1,4-β-endoglucanase in transgenic barley seeds during germination. Plant Mol. Biol. 41: 777–783; 1999. doi:10.1023/A:1006318206471.PubMedCrossRefGoogle Scholar
  73. Ohgren K.; Bura R.; Saddler J.; Zacchi G. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour. Technol. 98: 2503–2520; 2007. doi:10.1016/j.biortech.2006.09.003.PubMedCrossRefGoogle Scholar
  74. Oraby H.; Venkatesh B.; Dale B.; Ahmad R.; Ransom C.; Oehmke J.; Sticklen M. Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgen. Res. 16: 739–749; 2007. doi:10.1007/s11248-006-9064-9.CrossRefGoogle Scholar
  75. Panagiotou G.; Olsson L. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol. Bioeng. 962: 250–258; 2007. doi:10.1002/bit.21100.PubMedCrossRefGoogle Scholar
  76. Patel M.; Johnson J. S.; Brettell R. L. S.; Jacobsen J.; Xue G. -P. Transgenic barley expressing a fungal xylanase gene in the endosperm of developing grains. Mol. Breed. 6: 113–123; 2000. doi:10.1023/A:1009640427515.CrossRefGoogle Scholar
  77. Phillipson B. A. Expression of a hybrid (1-3,1-4)-β-glucanase in barley protoplasts. Plant Sci. 91: 195–206; 1993. doi:10.1016/0168-9452(93)90142-M.CrossRefGoogle Scholar
  78. Ransom C.; Balan V.; Biswas G.; Dale B.; Crockett E.; Sticklen M. Heterologous Acidothermus cellulolyticus 1,4-β-endoglucanase E1 produced within corn biomass converts corn stover into glucose. Appl. Biochem. Biotechnol. 136–140: 207–219; 2007. doi:10.1007/s12010-007-9053-3.CrossRefGoogle Scholar
  79. Rath, A. Focus on raw materials could reap big rewards. Bioenergy Business July/August 2007, pp 16–18; 2007.Google Scholar
  80. Sainz, M. B.; Dale, J. Towards cellulosic ethanol from sugarcane bagasse. Proceedings of the Australian Society of Sugar Cane Technologists 31: 18–23; 2009.Google Scholar
  81. Sanchez O. J.; Cardona C. A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99: 5270–5295; 2008. doi:10.1016/j.biortech.2007.11.013.PubMedCrossRefGoogle Scholar
  82. Somerville C. Biofuels. Curr. Biol. 174: R115–R119; 2007. doi:10.1016/j.cub.2007.01.010.PubMedCrossRefGoogle Scholar
  83. Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science 315: 801–804; 2007. doi:10.1126/science.1139612.PubMedCrossRefGoogle Scholar
  84. Sticklen M. Plant genetic engineering to improve biomass characteristics for biofuels. Curr. Opin. Biotechnol. 17: 315–319; 2006. doi:10.1016/j.copbio.2006.05.003.PubMedCrossRefGoogle Scholar
  85. Sticklen M. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat. Rev. Genet. 9: 433–443; 2008. doi:10.1038/nrg2336.PubMedCrossRefGoogle Scholar
  86. Streatfield S. J. Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol. J. 5: 2–15; 2007. doi:10.1111/j.1467-7652.2006.00216.x.PubMedCrossRefGoogle Scholar
  87. Sun J.; Kawazu T.; Kimura T.; Karita S.; Sakka K.; Ohmiya K. High expression of the xylanase B gene from Clostridium stercorarium in tobacco cells. J. Ferment. Bioeng. 843: 219–223; 1997. doi:10.1016/S0922-338X(97)82057-0.CrossRefGoogle Scholar
  88. Sun Y.; Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1–11; 2002. doi:10.1016/S0960-8524(01)00212-7.PubMedCrossRefGoogle Scholar
  89. Sun Y.; Cheng J. J.; Himmel M. E.; Skory C. D.; Adney W. S.; Thomas S. R.; Tisserat B.; Nishimura Y.; Yamamoto Y. T. Expression and characterization of Acidothermus cellulolyticus E1 endoglucanase in transgenic duckweed Lemna minor 8627. Bioresour. Technol. 98: 2866–2872; 2007. doi:10.1016/j.biortech.2006.09.055.PubMedCrossRefGoogle Scholar
  90. Syngenta. The potential of corn amylase for helping to meet US energy needs. http://www.syngenta.com/en/corporate_responsibility/pdf/Fact%20Sheet%20The%20Potental%20of%20CA%20for%20Helping%20Meet%20US%20Energy%20Needs.pdf (accessed 7 February 2009); 2009.
  91. Taherzadeh M. J.; Karimi K. Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 24: 707–738; 2007.Google Scholar
  92. Taylor L. E.; Dai Z.; Decker S. R.; Brunecky R.; Adney W. S.; Ding S.-Y.; Himmel M. E. Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol. 268: 413–424; 2008. doi:10.1016/j.tibtech.2008.05.002.PubMedCrossRefGoogle Scholar
  93. Teymouri F.; Alizadeh H.; Laureano-Perez L.; Dale B.; Sticklen M. Effects of ammonia fiber explosion treatment on activity of endoglucanase from Acidothermus cellulolyticus in transgenic plant. Appl. Biochem. Biotechnol. 113–116: 1183–1191; 2004. doi:10.1385/ABAB:116:1-3:1183.PubMedCrossRefGoogle Scholar
  94. Tyner W. The US ethanol and biofuels boom: its origins, current status and future prospects. Bioscience 587: 646–653; 2008. doi:10.1641/B580718.CrossRefGoogle Scholar
  95. US Department of Energy. Biomass program: biomass feedstock composition and property database. Available online at http://www1.eere.energy.gov/biomass/feedstock_databases.html (accessed 5 February 2009); 2009.
  96. Viikari L.; Alapuranen M.; Puranen T.; Vehmaanpera J.; Siika-aho M. Thermostable enzymes in lignocellulose hydrolysis. Adv. Biochem. Eng. Biotechnol. 108: 121–145; 2007. doi:10.1007/10_2007_065.PubMedGoogle Scholar
  97. Vogel J. Unique aspects of the grass cell wall. Curr. Opin. Plant Biol. 11: 301–307; 2008. doi:10.1016/j.pbi.2008.03.002.PubMedCrossRefGoogle Scholar
  98. Waltz E. Cellulosic ethanol booms despite unproven business models. Nat. Biotechnol. 261: 8–9; 2008. doi:10.1038/nbt0108-8.PubMedCrossRefGoogle Scholar
  99. Wang M.; Wu M.; Huo H. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environ. Res. Lett. 2: 024001; 2007(13 pp).CrossRefGoogle Scholar
  100. Weng J. K.; Li X.; Bonawitz N. D.; Chapple C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr. Opin. Biotechnol. 19: 166–172; 2008. doi:10.1016/j.copbio.2008.02.014.PubMedCrossRefGoogle Scholar
  101. Wyman C. E. What is (and is not) vital in advancing cellulosic ethanol. Trends Biotechnol. 254: 153–157; 2007. doi:10.1016/j.tibtech.2007.02.009.PubMedCrossRefGoogle Scholar
  102. Wyman C. E.; Dale B. E.; Elander R. T.; Holtzapple M.; Ladisch M. R.; Lee Y. Y. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 96: 1959–1966; 2005a. doi:10.1016/j.biortech.2005.01.010.PubMedCrossRefGoogle Scholar
  103. Wyman C. E.; Dale B. E.; Elander R. T.; Holtzapple M.; Ladisch M. R.; Lee Y. Y. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour. Technol. 96: 2026–2032; 2005b. doi:10.1016/j.biortech.2005.01.018.PubMedCrossRefGoogle Scholar
  104. Xue G. P.; Patel M.; Johnson J. S.; Smyth D. J.; Vickers C. E. Selectable marker-free transgenic barley producing a high level of cellulase (1,4-β-glucanase) in developing grains. Plant Cell. Rep. 21: 1088–1094; 2003. doi:10.1007/s00299-003-0627-4.PubMedCrossRefGoogle Scholar
  105. Yang B.; Wyman C. E. BSA Treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol. Bioeng. 944: 611–617; 2006. doi:10.1002/bit.20750.PubMedCrossRefGoogle Scholar
  106. Yang B.; Wyman C. E. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioproc. Biorefin. 2: 26–40; 2008. doi:10.1002/bbb.49.CrossRefGoogle Scholar
  107. Yomano L. P.; York S. W.; Ingram L. O. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol. 20: 132–138; 1998. doi:10.1038/sj.jim.2900496.PubMedCrossRefGoogle Scholar
  108. Yu L.-X.; Gray B. N.; Rutzke C. J.; Walker L. P.; Wilson D. B.; Hanson M. R. Expression of thermostable microbial cellulases in the chloroplasts of nicotine-free tobacco. J. Biotechnol. 131: 362–369; 2007a. doi:10.1016/j.jbiotec.2007.07.942.PubMedCrossRefGoogle Scholar
  109. Yu W.; Han F.; Gao Z.; Vega J. M.; Birchler J. A. Construction and behavior of engineered minichromosomes in maize. Proc. Natl. Acad. Sci. U. S. A. 10421: 8924–8929; 2007b. doi:10.1073/pnas.0700932104.PubMedCrossRefGoogle Scholar
  110. Zeigler M. T.; Thomas S. R.; Danna K. J. Accumulation of a thermostable endo-1,4-β-d-glucanase in the apoplast of Arabidopsis thaliana leaves. Mol. Breed. 6: 37–46; 2000. doi:10.1023/A:1009667524690.CrossRefGoogle Scholar
  111. Zhang M.; Eddy C.; Deanda K.; Finkelstein M.; Picataggio S. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267: 240–243; 1995. doi:10.1126/science.267.5195.240.PubMedCrossRefGoogle Scholar
  112. Zhang Y.-H. P.; Himmel H. E.; Mielenz J. R. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv. 24: 452–481; 2006. doi:10.1016/j.biotechadv.2005.10.002.CrossRefGoogle Scholar
  113. Zhang Y.-H. P.; Lynd L. R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: non-complexed cellulase systems. Biotechnol. Bioeng. 887: 797–824; 2004. doi:10.1002/bit.20282.PubMedCrossRefGoogle Scholar
  114. Ziegelhoffer T.; Raasch J. A.; Austin-Phillips S. Dramatic effects of truncation and sub-cellular targeting on the accumulation of recombinant microbial cellulase in tobacco. Mol. Breed. 8: 147–158; 2001. doi:10.1023/A:1013338312948.CrossRefGoogle Scholar
  115. Ziegelhoffer T.; Will J.; Austin-Phillips S. Expression of bacterial cellulase genes in transgenic alfalfa (Mendicago sativa L.), potato (Solanum tuberosum L.) and tobacco (Nicotiana tabacum L.). Mol. Breed. 5: 309–318; 1999. doi:10.1023/A:1009646830403.CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2009

Authors and Affiliations

  1. 1.Syngenta Centre for Sugarcane Biofuels Development, Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbane QueenslandAustralia

Personalised recommendations