Advertisement

Production of transgenic pineapple (Ananas cosmos (L.) Merr.) plants via adventitious bud regeneration

  • M.-L. Wang
  • G. Uruu
  • L. Xiong
  • X. He
  • C. Nagai
  • K. T. Cheah
  • J. S. Hu
  • G.-L. Nan
  • B. S. Sipes
  • H. J. Atkinson
  • P. H. Moore
  • K. G. Rohrbach
  • R. E. Paull
Article

Abstract

A new protocol for the production of transgenic pineapple plants was developed. Adventitious buds were induced directly from Agrobacterium-infected leaf bases and stem discs of in vitro plants, bypassing the establishment of callus cultures. Non-chimeric transgenic plants were obtained by multiple subculturing of primary transformants under increasing levels of selection. A total of 42 independent transgenic lines were produced from two cultivars with two different constructs: one containing a modified rice cystatin gene (Oc-IΔD86) and the other with the anti-sense gene to pineapple aminocyclopropane synthase (ACS). GUS histochemical staining provided the first evidence of the non-chimeric nature of the transformed plants. Their non-chimeric nature was further demonstrated by PCR analyses of the DNA extracted from individual leaves of a primary transformed plant and also from multiple plants propagated from a single transformation event. Southern hybridization confirmed random integration patterns of transgenes in the independent lines. For the Oc-IΔD86 gene, the expression at the mRNA level was detected via RT-PCR and its translation was detected by protein blot. Agronomic evaluation and bioassays of the transgenic plants will further validate the utility of this new tool for pineapple improvement.

Keywords

Transgenic pineapple Ananas comosus Agrobacterium tumefaciens Adventitious bud Regeneration Ethylene Nematodes Flowering 

Notes

Acknowledgements

We thank Mrs. Josephine Buenafe for technical support and Dr. Eden A. Perez for bringing the subculturing procedure to our attention. This project was funded by USDA ARS Specific Cooperative Agreements to the College of Tropical Agriculture and Human Resources entitled “Molecular Improvement of Pineapple” (59-5320-0-170) and “Hawaii Pineapple Improvement” (58-5320-5-785).

References

  1. Agarwal, S.; Kanwar, K. Comparison of genetic transformation in Morus alba L. via different regeneration systems. Plant Cell Rep. 26: 177–185; 2007. doi: 10.1007/s00299-006-0217-3.PubMedCrossRefGoogle Scholar
  2. Agarwal, S.; Kanwar, K.; Saini, N.; Jain, R. K. Agrobacterium tumefaciens mediated genetic transformation and regeneration of Morus alba L. Sci. Hortic. 100: 183–191; 2004. doi: 10.1016/j.scienta.2003.06.002.CrossRefGoogle Scholar
  3. Almeida, W. A. B.; Mourao, Filho, F. A. A.; Pino, L. E.; Boscariol, R. L.; Rodriguez, A. P. M.; Mendes, B. M. J. Genetic transformation and plant recovery from mature tissues of Citrus sinensis L. Osbeck. Plant Sci. 164: 203–211; 2003. doi: 10.1016/S0168-9452(02)00401-6.CrossRefGoogle Scholar
  4. Bugos, R. C.; Chiang, V. L.; Zhang, X. H.; Campbell, E. R.; Podila, G. K.; Campbell, W. H. RNA isolation from plant tissues recalcitrant to extraction in guanidine. Biotechniques. 19: 734–737; 1995.PubMedGoogle Scholar
  5. Chan, Y. K.; Coppens, G.; d’Eeckenbrugge, G. C.; Sanewski, G. M. Breeding and variety improvement. In: Bartholomew D. P.; Paull R. E.; Rohrbach K. G. (eds) The pineapple: botany, production and uses. CABI, Honolulu, pp 33–55; 2002.Google Scholar
  6. Cui, M. L.; Ezura, H.; Nishimura, S.; Kamada, H.; Handa, T. A rapid Agrobacterium-mediated transformation of Antirrhinum majus L. by using direct shoot regeneration from hypocotyl explant. Plant Sci 166: 873–879; 2004. doi: 10.1016/j.plantsci.2003.11.021.CrossRefGoogle Scholar
  7. Espinosa, P.; Lorenzo, J.; Iglesias, A.; Yabor, L.; Menéndez, E.; Borroto, J.; Hernández, L.; Arencibia, A. Production of pineapple transgenic plants assisted by temporary immersion bioreactors. Plant Cell Rep. 21: 136–140; 2002. doi: 10.1007/s00299-002-0481-9.CrossRefGoogle Scholar
  8. Firoozabady, E.; Heckert, M.; Gutterson, N. Transformation and regeneration of pineapple. Plant Cell, Tissue Organ Cult. 84: 1–16; 2006. doi: 10.1007/s11240-005-1371-y.CrossRefGoogle Scholar
  9. Firoozabady, E.; Moy, Y. Regeneration of pineapple plants via somatic embryogenesis and organogenesis. In Vitro Cell Dev. Biol. 40: 67–74; 2004. doi: 10.1290/1543-706X(2004)040<0067:UAPTOA>2.0.CO;2.CrossRefGoogle Scholar
  10. Graham, M.; Smith, M. K.; Hardy, V. G.; Ko, H. L. A method of plant transformation. International Patent WO 01/33943 A33941; 2001.Google Scholar
  11. He, X.; Miyasaka, S. C.; Fitch, M. M.; Moore, P. H.; Zhu, Y. J. Agrobacterium tumefaciens-mediated transformation of taro (Colocasia esculenta (L.) Schott) with a rice chitinase gene for improved tolerance to a fungal pathogen Sclerotium rolfsii. Plant Cell Rep. 27: 903–909; 2008. doi: 10.1007/s00299-008-0519-8.PubMedCrossRefGoogle Scholar
  12. Jefferson, R. A. Assaying chimeric genes in plants: The GUS gene fusion system. Plant. Mol. Biol. Report. 5: 387–405; 1987. doi: 10.1007/BF02667740.CrossRefGoogle Scholar
  13. Kato, C. Y.; Nagai, C.; Moore, P. H.; Zee, F.; Kim, M. S.; Steiger, D. L.; Ming, R. Intra-specific DNA polymorphism in pineapple (Ananas comosus (L.) Merr.) assessed by AFLP markers. Genet. Resour. Crop Evol. 51: 815–825; 2004. doi: 10.1007/s10722-005-0005-x.CrossRefGoogle Scholar
  14. Ko, H. L.; Campbell, P. R.; Jobin-D’ecor, M. P.; Eccleston, K. L.; Graham, M. W.; Smith, M. K. The introduction of transgenes to control blackheart in pineapple (Ananas comosus L.) cv. Smooth Cayenne by microprojectile bombardment. Euphytica. 150: 387–395; 2006. doi: 10.1007/s10681-006-9124-5.CrossRefGoogle Scholar
  15. Lakshmanan, P.; Geijskes, R. J.; Wang, L.; Elliott, A.; Grof, C. P.; Berding, N.; Smith, G. R. Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture. Plant Cell Rep. 25: 1007–1015; 2006. doi: 10.1007/s00299-006-0154-1.PubMedCrossRefGoogle Scholar
  16. Lazo, G. R.; Stein, P. A.; Ludwig, R. A. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology (N Y). 9: 963–967; 1991. doi: 10.1038/nbt1091-963.CrossRefGoogle Scholar
  17. Lin, R. C.; Ding, Z. S.; Li, L. B.; Kuang, T. Y. A rapid and efficient DNA minipreparation suitable for screening transgenic plants. Plant. Mol. Biol. Report. 19: 379a–379e; 2001.CrossRefGoogle Scholar
  18. Mathews, H.; Dewey, V.; Wagoner, W.; Bestwick, R. K. Molecular and cellular evidence of chimaeric tissues in primary transgenics and elimination of chimaerism through improved selection protocols. Transgenic. Res. 7: 123–129; 1998.CrossRefGoogle Scholar
  19. May, G. D.; Afza, R.; Mason, H. S.; Wiecko, A.; Novak, F. J.; Arntzen, C. J. Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Bio/technology 13: 486–492; 1995. doi: 10.1038/nbt0595-486.CrossRefGoogle Scholar
  20. Mezzetti, B.; Costantini, E. Strawberry (Fragaria x ananassa). Methods Mol. Biol. 344: 287–295; 2006.PubMedGoogle Scholar
  21. Mezzetti, B.; Pandolfini, T.; Navacchi, O.; Landi, L. Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnol. 2: 18; 2002. doi: 10.1186/1472-6750-2-18.PubMedCrossRefGoogle Scholar
  22. Nagai, C.; Rosal, L. Pineapple micropropagation. Hawaii Sugar Planters’ Association Annual Report 33–34; 1995.Google Scholar
  23. Nan, G. L.; Nagai, C.; Sipes, B. Field evaluation of tissue culture-derived pineapple plant at pre-flowering stage. Hawaii Agriculture Research Center Annual Report 24–25; 1997.Google Scholar
  24. Nontaswatsri, C.; Fukai, S. Carnation (Dianthus caryophylus L.). Methods Mol. Biol. 344: 311–320; 2006.PubMedGoogle Scholar
  25. Rangan, T. S. Pineapple. In: Ammirato P. V.; Evans D. A.; Sharp W. R.; Yamada Y. (eds) Handbook of plant cell culture. Macmillan, New York, pp 373–536; 1984.Google Scholar
  26. Rohrbach, K. G.; Leal, F.; d’Eeckenbrugge, G. C. History, distribution and world production. In: Bartholomew D. P.; Paull R. E.; Rohrbach K. G. (eds) The pineapple: botany, production and uses. CABI, Honolulu, pp 1–12; 2002.Google Scholar
  27. Sharma, K. K.; Anjaiah, V. V. An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci. 159: 7–19; 2000. doi: 10.1016/S0168-9452(00)00294-6.PubMedCrossRefGoogle Scholar
  28. Sharma, K. K.; Bhatnagar-Mathur, P. Peanut (Arachis hypogaea L.). Methods Mol. Biol. 343: 347–358; 2006.PubMedGoogle Scholar
  29. Song, G. Q.; Sink, K. C. Optimizing shoot regeneration and transient expression factors for Agrobacterium tumefaciens transformation of sour cherry (Prunus cerasus L.) cultivar Montmorency. Sci. Hortic. 106: 60–69; 2005. doi: 10.1016/j.scienta.2005.02.018.CrossRefGoogle Scholar
  30. Song, G. Q.; Sink, K. C. Transformation of Montmorency sour cherry (Prunus cerasus L.) and Gisela 6 (P. cerasus x P. canescens) cherry rootstock mediated by Agrobacterium tumefaciens. Plant Cell Rep. 25: 117–123; 2006. doi: 10.1007/s00299-005-0038-9.PubMedCrossRefGoogle Scholar
  31. Sripaoraya, S.; Marchant, R.; Power, J. B.; Davey, M. R. Herbicide-tolerant transgenic pineapple (Ananas comosus) produced by microprojectile bombardment. Ann. Bot. 88: 597–603; 2001. doi: 10.1006/anbo.2001.1502.CrossRefGoogle Scholar
  32. Sun, H. J.; Uchii, S.; Watanabe, S.; Ezura, H. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol. 47: 426–431; 2006. doi: 10.1093/pcp/pci251.PubMedCrossRefGoogle Scholar
  33. Syamala, D.; Devi, P. Efficient regeneration of sorghum, Sorghum bicolor (L.) Moench, from shoot-tip explant. Indian J. Exp. Biol. 41: 1482–1486; 2003.PubMedGoogle Scholar
  34. Terakami, S.; Matsuta, N.; Yamamoto, T.; Sugaya, S.; Gemma, H.; Soejima, J. Agrobacterium-mediated transformation of the dwarf pomegranate (Punica granatum L. var. nana). Plant Cell Rep. 26: 1243–1251; 2007. doi: 10.1007/s00299-007-0347-2.PubMedCrossRefGoogle Scholar
  35. Tournier, V.; Grat, S.; Marque, C.; El Kayal, W.; Penchel, R.; de Andrade, G.; Boudet, A. M.; Teulieres, C. An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis x Eucalyptus urophylla). Transgenic Res. 12: 403–411; 2003. doi: 10.1023/A:1024217910354.PubMedCrossRefGoogle Scholar
  36. Trusov, Y.; Botella, J. R. Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple [Ananas comosus (L.) Merr.]. J. Exp. Bot. 57: 3953–3960; 2006. doi: 10.1093/jxb/erl167.PubMedCrossRefGoogle Scholar
  37. Urwin, P. E.; Atkinson, H. J.; Waller, D. A.; McPherson, M. J. Engineered oryzacystatin-I expressed in transgenic hairy roots confers resistance to Globodera pallida. Plant J. 8: 121–131; 1995. doi: 10.1046/j.1365-313X.1995.08010121.x.PubMedCrossRefGoogle Scholar
  38. Urwin, P. E.; Green, J.; Atkinson, H. J. Expression of a plant cystatin confers partial resistance to Globodera, full resistance is achieved by pyramiding a cystatin with natural resistance. Mol Breed. 12: 263–269; 2003. doi: 10.1023/A:1026352620308.CrossRefGoogle Scholar
  39. Urwin, P. E.; Lilley, C. J.; McPherson, M. J.; Atkinson, H. J. Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant J. 12: 455–461; 1997. doi: 10.1046/j.1365-313X.1997.12020455.x.PubMedCrossRefGoogle Scholar
  40. Wakasa, K. Variation in the plants differentiated from the tissue culture of pineapple. Japan. J. Breed. 29: 13–22; 1979.Google Scholar
  41. Wakasa, K. Pineapples. In: Bajaja Y. P. S. (ed) Biotechnology in agriculture and forestry 5: trees II. Springer, Berlin, pp 13–22; 1989.Google Scholar
  42. Wang, G.; Xu, Y. Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference. Plant Cell Rep. 27: 1177–1184; 2008. doi: 10.1007/s00299-008-0535-8.PubMedCrossRefGoogle Scholar
  43. Wei, H.; Wang, M. L.; Moore, P. H.; Albert, H. H. Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. J. Plant Physiol. 160: 1241–1251; 2003. doi: 10.1078/0176-1617-01086.PubMedCrossRefGoogle Scholar
  44. Yabor, L.; Espinosa, P.; Arencibia, A. D.; Lorenzo, J. C. Pineapple [Ananas comosus (L.) Merr.]. Methods Mol. Biol. 344: 219–226; 2006.PubMedGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2009

Authors and Affiliations

  • M.-L. Wang
    • 1
  • G. Uruu
    • 2
  • L. Xiong
    • 1
  • X. He
    • 1
  • C. Nagai
    • 1
  • K. T. Cheah
    • 2
  • J. S. Hu
    • 3
  • G.-L. Nan
    • 1
    • 4
  • B. S. Sipes
    • 3
  • H. J. Atkinson
    • 5
  • P. H. Moore
    • 6
  • K. G. Rohrbach
    • 3
  • R. E. Paull
    • 2
  1. 1.Hawaii Agriculture Research CenterKuniaUSA
  2. 2.Department of Tropical Plant and Soil SciencesUniversity of Hawaii at ManoaHonoluluUSA
  3. 3.Department of Plant and Environment Protection SciencesUniversity of Hawaii at ManoaHonoluluUSA
  4. 4.Biological SciencesStanford UniversityStanfordUSA
  5. 5.Centre for Plant SciencesUniversity of LeedsLeedsUK
  6. 6.USDA, ARS, PWA, Pacific Basin Agricultural Research CenterHiloUSA

Personalised recommendations