A two-step procedure for adventitious shoot regeneration on excised leaves of lowbush blueberry

  • S. C. DebnathEmail author


An efficient system to regenerate shoots on excised leaves of greenhouse-grown wild lowbush blueberry (Vaccinium angustifolium Ait.) was developed in vitro. The effect of thidiazuron (TDZ) on adventitious bud and shoot formation from apical, medial, and basal segments of the leaves was tested. Leaf cultures produced multiple buds and shoots with or without an intermediary callus phase on 2.3–4.5 μM TDZ within 6 wk of culture initiation. The greatest shoot regeneration came from young expanding basal leaf segments positioned with the adaxial side touching the culture medium and maintained for 2 wk in darkness. Callus development and shoot regeneration depended not only on the polarity of the explants but also on the genotype of the clone that supplied the explant material. TDZ-initiated cultures were transferred to medium containing 2.3–4.6 μM zeatin and produced usable shoots after one additional subculture. Elongated shoots were dipped in 39.4 mM indole-3-butyric acid powder and planted on a peat:perlite soilless medium at a ratio of 3:2 (v/v), which yielded an 80–90% rooting efficiency. The plantlets were acclimatized and eventually established in the greenhouse with 75–85% survival.


Organogenesis Vaccinium angustifolium Cytokinins In vitro culture Ex vitro rooting 



The author gratefully acknowledges the excellent technical help from Glen Chubbs, Sarah Leonard, Darryl Martin, Shawn Foley, and Jeff Power. This work is the Atlantic Cool Climate Crop Research Centre contribution no. 187.


  1. Barney D. L.; Lopez O. M.; King E. Micropropagation of cascade huckleberry, mountain huckleberry, and oval-leaf bilberry using woody plant medium and Murashige and Skoog medium formulations. HortTechnology 17: 279–284; 2007.Google Scholar
  2. Cao X.; Hammerschlag F. A. Improved shoot organogenesis from leaf explants of highbush blueberry. HortScience 35: 945–947; 2000.Google Scholar
  3. Chandler C. K.; Draper A. D. Effect of zeatin and 2iP on shoot proliferation of three highbush blueberry clones in vitro. HortScience 21: 1065–1066; 1986.Google Scholar
  4. Compton E. C. Statistical methods suitable for the analysis of plant tissue culture data. Plant Cell. Tissue Organ Cult. 37: 217–242; 1994.Google Scholar
  5. Cristoni A.; Magistretti M. J. Antiulcer and healing activities of Vaccinium myrtillus anthiocyanosides. Farmaco [Pratica] 42: 29–43; 1987.Google Scholar
  6. Crowe K. M.; Bushway A. A.; Bushway R. J. Effects of alternative postharvest treatments on the microbiological quality of lowbush blueberries. Small Fruits Rev. 4: 29–39; 2005. doi: 10.1300/J301v04n03_03.CrossRefGoogle Scholar
  7. Debnath S. C. Combined application of classical and biotechnological techniques in the development of small fruits. Can. J. Plant Sci. 80: 233; 2000.Google Scholar
  8. Debnath S. C. Improved shoot organogenesis from hypocotyls segments of lingonberry (Vaccinium vitis-idaea L.). In Vitro Cell. Dev. Biol. Plant 39: 490–495; 2003. doi: 10.1079/IVP2003458.CrossRefGoogle Scholar
  9. Debnath S. C. In vitro culture of lowbush blueberry (Vaccinium angustifolium Ait.). Small Fruits Rev. 3: 393–408; 2004. doi: 10.1300/J301v03n03_16.CrossRefGoogle Scholar
  10. Debnath S. C. A two-step procedure for adventitious shoot regeneration from in-vitro-derived lingonberry leaves: shoot induction with TDZ and shoot elongation using zeatin. HortScience 40: 189–192; 2005.Google Scholar
  11. Debnath S. C.; McRae K. B. An efficient in vitro shoot propagation of cranberry (Vaccinium macrocarpon Ait.) by axillary bud proliferation. In Vitro Cell. Dev. Biol. Plant 37: 243–249; 2001a. doi: 10.1007/s11627-001-0043-9.CrossRefGoogle Scholar
  12. Debnath S. C.; McRae K. B. In vitro culture of lingonberry (Vaccinium vitis-idaea L.): the influence of cytokinins and media types on propagation. Small Fruits Rev. 1: 3–19; 2001b. doi: 10.1300/J301v01n03_02.CrossRefGoogle Scholar
  13. Debnath S. C.; McRae K. B. An efficient adventitious shoot regeneration system on excised leaves of micropropagated lingonberry (Vaccinium vitis-idaea L.). J. Hort. Sci. Biotechnol. 77: 744–752; 2002.Google Scholar
  14. Eccher T.; Noe N. Comparison between 2iP and zeatin in the micropropagation of highbush blueberry (Vaccinium corymbosum). Acta Hort. 441: 185–190; 1989.Google Scholar
  15. Geisler, M. Blueberries. (cited Feb 2008); 2008.
  16. George E. F. Plant propagation by tissue culture, Part 1: in practice. Exegetics, Edington1993.Google Scholar
  17. Gill R.; Saxena P. K. Direct somatic embryogenesis and regeneration of plants from seedling explants of peanut (Arachis hypogeae): promotive role of thidiazuron. Can. J. Bot. 70: 1186–1192; 1992. doi: 10.1139/b92-147.CrossRefGoogle Scholar
  18. Graham J.; Greig K.; McNicol R. J. Transformation of blueberry without antibiotic selection. Ann. Appl. Biol. 128: 557–564; 1996. doi: 10.1111/j.1744-7348.1996.tb07114.x.CrossRefGoogle Scholar
  19. Huetteman C. A.; Preece J. E. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult. 33: 105–119; 1993. doi: 10.1007/BF01983223.CrossRefGoogle Scholar
  20. Kaldmäe H.; Karp K.; Starast M.; Paal T. Effect of donor plant physiological condition on in vitro establishment of Vaccinium angustifolium shoot explants. Acta Hort. 715: 433–438; 2006.Google Scholar
  21. Kalt W.; Forney C. F.; Martin A.; Prior R. L. Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J. Agr. Food Chem. 47: 4638–4644; 1999. doi: 10.1021/jf990266t.CrossRefGoogle Scholar
  22. Kamei H.; Kojima T.; Hasegawa M.; Koide T.; Umeda T.; Yukawa T.; Terabe K. Suppression of tumor cell growth by anthocyanins in vitro. Cancer Invest. 13: 590–594; 1995. doi: 10.3109/07357909509024927.PubMedCrossRefGoogle Scholar
  23. Litwińczuk, W.; Wadas, M. Auxin-dependent development and habituation of highbush blueberry (Vaccinium × covilleanum But. Et Pl.) ‘Herbert’ in vitro shoot cultures. Sci. Hort. 119:41–48; 2008.CrossRefGoogle Scholar
  24. Makki, F. Canada’s fruit industry, Agriculture and Agri-Food Canada, (cited 18 Sep 2008); 2008.
  25. Marcotrigiano M.; McGlew S. P.; Hackett G.; Chawla B. Shoot regeneration from tissue-cultured leaves of the American cranberry (Vaccinium macrocarpon). Plant Cell Tissue Organ Cult. 44: 195–199; 1996.CrossRefGoogle Scholar
  26. Meiners J.; Schwab M.; Szankowski I. Efficient in vitro regeneration systems for Vaccinium species. Plant Cell Tissue Organ Cult. 89: 169–176; 2007.CrossRefGoogle Scholar
  27. Minocha S. C. Plant growth regulators and morphogenesis in cell and tissue culture of forest trees. In: Bonga J. M.; Durzan D. J. (eds) Cell and tissue culture in forestry, vol. I. Martinus Nijhoff, Dordrecht, pp 50–66; 1987.Google Scholar
  28. Qu L.; Polashock J.; Vorsa N. A high efficient in vitro cranberry regeneration system using leaf explants. HortScience 35: 948–952; 2000.Google Scholar
  29. Rowland L. J.; Ogden E. I. Use of a cytokinin conjugate for efficient shoot regeneration from leaf sections of highbush blueberry. HortScience 27: 1127–1129; 1992.Google Scholar
  30. Shibli R.; Smith M. A. I. Direct shoot regeneration from Vaccinium pahalae (ohelo) and V. myrtillus (bilberry) leaf explants. HortScience 31: 1225–1228; 1996.Google Scholar
  31. Tetsumura, T.; Matsumoto, Y.; Sato, M.; Honsho, C.; Yamashita, K.; Komatsu, H.; Sugimoto, Y.; Kunitake, H. Evaluation of basal media for micropropagation of four highbush blueberry cultivars. Sci. Hort. 119:72–74; 2008.CrossRefGoogle Scholar
  32. van Nieuwkerk J. P.; Zimmerman R. H.; Fordham I. Thidiazuron stimulation of apple shoot proliferation in vitro. HortScience 21: 516–518; 1986.Google Scholar
  33. Vander Kloet, S. P. The genus Vaccinium in North America. Agric. Can. Publ. 1828; 1988.Google Scholar
  34. Visser C.; Qureshi J. A.; Gill R.; Saxena P. K. Morphoregulatory role of thidiazuron: substitution of auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyl cultures. Plant Physiol. 99: 1704–1707; 1992.PubMedCrossRefGoogle Scholar
  35. Wang H.; Nair M. G.; Strasburg M.; Chang Y. C.; Booren A. M.; Gray J. I.; DeWitt D. L. Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J. Nat. Prod. 62: 294–296; 1999.PubMedCrossRefGoogle Scholar
  36. Welander M. Plant regeneration from leaf and stem segments of shoots raised in vitro from mature apple trees. J. Plant Physiol. 132: 738–44; 1988.Google Scholar
  37. Yepes L. M.; Aldwinckle H. S. Factors that affect leaf regeneration efficiency in apple, and effect of antibiotics in morphogenesis. Plant Cell Tissue Organ Cult. 37: 257–69; 1994.Google Scholar

Copyright information

© The Society for In Vitro Biology 2009

Authors and Affiliations

  1. 1.Atlantic Cool Climate Crop Research CentreAgriculture and Agri-Food CanadaSt. John’sCanada

Personalised recommendations