Efficient micropropagation protocol of Spilanthes acmella L. possessing strong antimalarial activity

  • Vibha Pandey
  • Veena Agrawal


Micropropagation has been achieved in a promising larvicidal asteraceous taxon Spilanthes acmella L. using seedling leaf explants. The explants were reared on a variety of growth regulators, namely 2,4-dichlorophenoxyacetic acid, 1-naphthalene acetic acid, Indole-3-butyric acid, N6-benzyladenine, and kinetin either alone or in combination on Murashige and Skoog’s (MS) medium. The best green and compact callus was obtained on 1 μM NAA and 10 μM benzyladenine (BA) in 15 d. The callus on subculture to the same but fresh medium after every 30 d differentiated an average of 12.90 ± 0.32 shoot buds in 50% cultures. Elongation in shoot buds occurred only if they were transferred to NAA lacking MS+BA medium. An average number of 4.22 ± 0.83 shoots and 15 ± 0.84 shoot buds per explant were obtained in 70.3% cultures on MS + 10 μM BA in 30 d. One hundred percent excised shoots rooted in MS(1/2) + 0.1 μM IBA within 2 wk. The plants were gradually hardened and established in soil where they flowered and set viable seeds. The regenerated plants were morphologically similar to the field grown plants and showed 100% larvicidal activity against malaria and filarial vectors.


BA Larvicidal activity Leaf explant Multiple shoots NAA Plantlets 



Veena Agrawal is grateful to University Grants Commission for financial assistance and Vibha Pandey to CSIR, New Delhi for the award of JRF and SRF. Authors are also thankful to Dr. A.P. Dash and Dr. K. Raghavendra, National Institute of Malaria Research, Delhi for providing assistance in conducting the bioassay tests.


  1. Agrawal V.; Prakash S.; Gupta S. C. Effective protocol for in vitro shoot production through nodal explant of Simmondsia chinensis. Biol. Plant 45: 449–453; 2002. doi: 10.1023/A:1016238205522.CrossRefGoogle Scholar
  2. Agrawal V.; Sardar P. R. In vitro propagation through leaflet and cotyledon derived callus in Senna (Cassia angustifolia)—a medicinally valuable drought resistant legume. Biol. Plant 50: 118–122; 2006. doi: 10.1007/s10535-005-0084-8.CrossRefGoogle Scholar
  3. Agrawal V.; Sardar P. R. In vitro regeneration through somatic embryogenesis and organogenesis using cotyledons of Cassia angustifolia Vahl. In Vitro Cell Dev. Biol. Plant 43: 585–592; 2007. doi: 10.1007/s11627-007-9058-1.CrossRefGoogle Scholar
  4. Anonymous. World Health Organization: Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides; 1981.Google Scholar
  5. Anonymous The Wealth of India: a dictionary of Indian raw materials and industrial products, Vol.10. CSIR, New Delhi, pp 11–12; 1989.Google Scholar
  6. Armstrong J. I.; Yuan S.; Dale J. M.; Tanner V. N.; Theologies A. Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in Arabidopsis. Proc. Natl. Acad. Sci. 101: 14978–14983; 2004. doi: 10.1073/pnas.0404312101.PubMedCrossRefGoogle Scholar
  7. Azad M. A. K.; Yokota S.; Ohkubo T.; Andoh Y.; Yahara S.; Yoshizawa N. In vitro regeneration of the medicinal woody plant Phellodendron amurense Rupr. through excised leaves. Plant Cell Tissue Organ Cult. 80: 43–50; 2005. doi: 10.1007/s11240-004-8809-5.CrossRefGoogle Scholar
  8. Bais H. P.; Green J. B.; Walker T. S.; Okemo P. O.; Vivanco J. M. In vitro propagation of Spilanthes mauritiana. DC., an endangered medicinal herb, through axillary bud cultures. In Vitro Cell Dev. Biol. Plant 38: 598–601; 2002. doi: 10.1079/IVP2002345.CrossRefGoogle Scholar
  9. Borges-Del-Castillo J.; Vazquez-Bueno P.; Secundino-Lucas M.; Martinez-Martir A. I.; Joseph-Nathan P. The N-2-phenylethylcinnamide from Spilanthes ocymifolia. Phytochemistry 23: 2671–2672; 1984.CrossRefGoogle Scholar
  10. Caboni E.; Tonelli M. G.; Lauri P.; Angeli S. D.; Damiano C. In vitro shoot regeneration from leaves of wild pear. Plant Cell Tissue Organ Cult. 59: 1–7; 1999. doi: 10.1023/A:1006351214343.CrossRefGoogle Scholar
  11. Charlwood B. V.; Pletsch M. Manipulation of natural product accumulation in plants through genetic engineering. In: Johnson C. B.; Franz C. (eds) Breeding research on aromatic and medicinal plants. Haworth Herbal Press, NY, pp 139–151; 2002.Google Scholar
  12. Cline M. G. Apical dominance. Bot. Rev. 57: 318–358; 1991. doi: 10.1007/BF02858771.CrossRefGoogle Scholar
  13. Coenen C.; Christian M.; Luthen H.; Lomax T. L. Cytokinin inhibits a subset of diageotropica-dependent primary auxin responses in tomato. Plant Physiol. 131: 1692–1704; 2003. doi: 10.1104/pp.102.016196.PubMedCrossRefGoogle Scholar
  14. Dal Cin V.; Boschetti A.; Dorigoni A.; Ramina A. Benzylaminopurine application on two different apple cultivars (Malus domestica) displays new and unexpected fruitlet abscission features. Ann. Bot. 99: 1195–1202; 2007. doi: 10.1093/aob/mcm062.PubMedCrossRefGoogle Scholar
  15. Dhar U.; Joshi M. Efficient plant regeneration protocol through callus for Saussuraea obvallata (DC.) Edgew.(Asteraceae): effect of explant type, age and plant growth regulators. Plant Cell Rep. 24: 195–200; 2005. doi: 10.1007/s00299-005-0932-1.PubMedCrossRefGoogle Scholar
  16. Echeverrigaray S.; Fracaro F.; Andrade L. B.; Biasio S.; Atti-Serafini L In vitro shoot regeneration from leaf explants of Roman chamomile. Plant Cell, Tissue Organ Cult. 60: 1–4; 2000.CrossRefGoogle Scholar
  17. Eklof S.; Astot C.; Blackwell J.; Moritz T.; Olsson O.; Sandberg G. Auxin–cytokinin interactions in wild-type and transgenic tobacco. Plant Cell Physiol. 38: 225–235; 1997.Google Scholar
  18. Fabry W.; Okemo P. O.; Ansong R. Fungistatic and fungicidal activity of east African medicinal plants. Mycoses 39: 67–70; 1996.PubMedCrossRefGoogle Scholar
  19. Fabry W.; Okemo P. O.; Ansong R. Antibacterial activity of east African medicinal plants. J. Ethnopharmacol. 60: 79–84; 1998. doi: 10.1016/S0378-8741(97)00128-1.PubMedCrossRefGoogle Scholar
  20. Finney D. J. Probit analysis. 3rdrd ed. Cambridge University Press, Cambridge, UK, pp 1–333; 1971.Google Scholar
  21. Haw A. B.; Keng C. L. Micropropagation of Spilanthes acmella L. a bio-insecticide plant, through proliferation of multiple shoots. J. Appl. Hortic. 5: 65–68; 2003.Google Scholar
  22. Hirose N.; Makita N.; Kojima M.; Kamada-Nobusada T.; Sakakibara H. Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol. 48: 523–539; 2007. doi: 10.1093/pcp/pcm022.PubMedCrossRefGoogle Scholar
  23. Jansen R. K. Systematics of Acmella (Asteraceae: Heliantheae). Syst. Bot. Mongr. 8: 115; 1985.Google Scholar
  24. Joshi M.; Dhar U. In vitro propagation of Saussuraea obvallata (DC.) Edgew.—an endangered ethnoreligious medicinal herb of Himalaya. Plant Cell Rep. 21: 933–939; 2003. doi: 10.1007/s00299-003-0601-1.PubMedCrossRefGoogle Scholar
  25. Kishore R.; Sha Valli Khan P. S.; Sharma G. J. Hybridization and in vitro culture of an orchid hybrid Ascocenda ‘Kangla’. Sci. Hortic. 108: 66–73; 2006. doi: 10.1016/j.scienta.2005.12.004.CrossRefGoogle Scholar
  26. Koroch A.; Juliani H. R.; Kapteyn J.; Simon J. E. In vitro regeneration of Echinacea purpurea from leaf explants. Plant Cell Tissue Organ Cult. 69: 79–83; 2002. doi: 10.1023/A:1015042032091.CrossRefGoogle Scholar
  27. Kumar P. P.; DimpsRao C.; Goh C. J. Influence of petiole and lamina on adventitious shoot initiation from leaf explants of Paulownia fortunei. Plant Cell Rep. 17: 886–890; 1998. doi: 10.1007/s002990050503.CrossRefGoogle Scholar
  28. Kumar R.; Sharma K.; Agrawal V. In vitro clonal propagation of an important plant Holarrhena antidysenterica (L.) Wall. through nodal explants from mature tree. In Vitro Cell Dev. Biol. Plant. 41: 137–144; 2005. doi: 10.1079/IVP2004624.CrossRefGoogle Scholar
  29. Martin K. Rapid propagation of Holostemma ada-kodien Schult., a rare medicinal plant, through axillary bud multiplication and indirect organogenesis. Plant Cell Rep. 21: 112–117; 2002. doi: 10.1007/s00299-002-0483-7.CrossRefGoogle Scholar
  30. Murashige T.; Skoog F. A. Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497; 1962. doi: 10.1111/j.1399-3054.1962.tb08052.x.CrossRefGoogle Scholar
  31. Nordstrom A.; Tarkowski P.; Tarkowska D.; Norbaek R.; Astot C.; Dolezal K.; Sandberg G. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin regulated development. Proc. Natl. Acad. Sci. 101: 8039–8044; 2004. doi: 10.1073/pnas.0402504101.PubMedCrossRefGoogle Scholar
  32. Pandey V.; Agrawal V.; Raghavendra K.; Dash A. P. Strong larvicidal activity of three species of Spilanthes (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filaria vector (Culex quinquefasciatus Say). Parasitol. Res. 102: 171–174; 2007. doi: 10.1007/s00436-007-0763-9.PubMedCrossRefGoogle Scholar
  33. Pitasawat B.; Choochote W.; Kanjanapothi D.; Panthong A.; Jitpakdi A.; Chaithong U. Screening for larvicidal activity of ten carminative plants. South East Asian J. Trop. Med. Public Health 29: 660–662; 1998.Google Scholar
  34. Prasad M. M.; Seenaya G. Effects of spices on growth of red halophilic cocci isolated from salt cured fish and solar salt. Food Res. Int. 33: 793–798; 2000. doi: 10.1016/S0963-9969(00)00100-9.CrossRefGoogle Scholar
  35. Purohit S. D.; Dave A.; Kukda G. Micropropagation of safed musli (Chlorophytum borivilianum), a rare Indian medicinal herb. Plant Cell Tissue Organ Cult. 39: 93–96; 1994. doi: 10.1007/BF00037596.CrossRefGoogle Scholar
  36. Ramawat K. G. Production of alkaloids. In: Ramawat K. G.; Merillon J. M. (eds) Biotechnology secondary metabolites. Oxford Publications, New Delhi, India, pp 193–218; 2002.Google Scholar
  37. Ramsewak R. S.; Erickson A. J.; Nair M. G. Bioactive N-isobutylamides from the flower buds of Spilanthes acmella. Phytochemistry 51: 729–732; 1999. doi: 10.1016/S0031-9422(99)00101-6.PubMedCrossRefGoogle Scholar
  38. Rashotte A. M.; Chae H. S.; Bridey B. M.; Kieber J. J. The interaction of cytokinin with other signals. Physiol. Plant 123: 184–194; 2005. doi: 10.1111/j.1399-3054.2005.00445.x.CrossRefGoogle Scholar
  39. Rey H. Y.; Scocchi A. M.; Gonzalez A. M.; Mroginski L. A. Plant regeneration in Arachis pintoi (Leguminosae) through leaf culture. Plant Cell Rep. 19: 856–862; 2000. doi: 10.1007/s002990000198.CrossRefGoogle Scholar
  40. Richard, A. Spilanthes. 1996.
  41. Saraf D. K.; Dixit V. K. Spilanthes acmella Murr.: study on its extract spilanthol as larvicidal compound. Asian J. Exp. Sci. 16: 9–19; 2002.Google Scholar
  42. Saritha K. V.; Prakash E.; Ramamurthy N.; Naidu C. V. Micropropagation of Spilanthes acmella Murr. Biol. Plant 45: 581–584; 2002. doi: 10.1023/A:1022385327873.CrossRefGoogle Scholar
  43. Schmulling T.; Schafer S.; Romanov G. Cytokinins as regulators of gene expression. Physiol. Plant 100: 505–519; 1997. doi: 10.1111/j.1399-3054.1997.tb03055.x.CrossRefGoogle Scholar
  44. Shalaan E. A. S.; Canyon D.; Younes M. W. F.; Abdel-Wahab H.; Mansour A. H. A review of botanical phytochemicals with mosquitocidal potential. Environ. Int. 31: 1149–1166; 2005. doi: 10.1016/j.envint.2005.03.003.CrossRefGoogle Scholar
  45. Skoog F.; Miller C. O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11: 118–131; 1957.Google Scholar
  46. Sreekumar S.; Seeni S.; Pushpangadan P. Micropropagation of Hemidesmus indicus for cultivation and production of 2-hydroxy 4-methoxy benzaldehyde. Plant Cell Tissue Organ Cult. 62: 211–218; 2000. doi: 10.1023/A:1006486817203.CrossRefGoogle Scholar
  47. Storey C.; Salem J. I. Lay use of amazonian plants for the treatment of tuberculosis. Acta Amazonica 27: 175; 1997.Google Scholar
  48. Watt P. M.; Brayer-Brandwijk M. C. The medicinal and poisonous plants of Sourthern and Eastern Africa. 2nd ed. E&S Livingstone, Edinburgh1962.Google Scholar
  49. Woodword A. W.; Bartel B. Auxin: regulation, action and interaction. Ann. Bot. 95: 707–735; 2005. doi: 10.1093/aob/mci083.CrossRefGoogle Scholar
  50. Willis J. C. A dictionary of the flowering plants and ferns. Cambridge University Press, Cambridge1977.Google Scholar
  51. Zhang G. Q.; Zhang D. Q.; Tang G. X.; He T.; Zhou W. J. Plant development from microspore-derived embryos in oilseed rape as affected by chilling, dessication and cotyledon excision. Biol. Plant 50: 180–186; 2006. doi: 10.1007/s10535-006-0004-6.CrossRefGoogle Scholar
  52. Zolman B. K.; Yoder A.; Bartel B. Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics 156: 1323–1337; 2000.PubMedGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2009

Authors and Affiliations

  1. 1.Department of BotanyUniversity of DelhiDelhiIndia

Personalised recommendations