Screening of a broad range of rice (Oryza sativa L.) germplasm for in vitro rapid plant regeneration and development of an early prediction system

  • A. N. G. Dabul
  • H. Belefant-Miller
  • M. RoyChowdhury
  • J. F. Hubstenberger
  • A. Lorence
  • G. C. PhillipsEmail author
Developmental Biology


Rice has emerged as a model monocot for studies in agriculture and biotechnology due to its relatively small genome and a ready accessibility to plant material. Tissue culture is one of the tools required for genetic transformation and some breeding programs, and the selection of high-frequency regenerator types is essential for success in these technologies. Thirty-three rice entries with agricultural and biotechnological characteristics of interest were screened with the aim to identify the best regenerators. Entries that exhibited between 50% and 90% regeneration frequencies include ‘Taipei-309,’ ‘Super Dwarf,’ ‘Norin’ (japonica types), PI 312777, ‘Ali Combo’ (indica types), ‘STG-S,’ and ‘LA3’ (red rice types). One third of the entries tested were at least two times better at regeneration than the often-cited regenerator ‘Nipponbare.’ Those entries showing at least 85% frequency of greening or somatic embryo formation at 15 or 30 d on regeneration medium ultimately produced whole plants after 45 d on regeneration medium at high frequency (at least 40%); those entries not reaching the 85% threshold of greening by Days 15 or 30 exhibited moderate (15–40%) to low (less than 10%) frequency of whole plant regeneration. This greening response suggests the means for an early prediction system for identification of useful rice regenerator lines, which would be beneficial for high-throughput screening of germplasm as well as for decreasing the time and cost of in vitro culture.


Tissue culture Rice Early prediction Plant regeneration 



The authors thank the USDA-ARS Dale Bumpers National Rice Research Center (Stuttgart, AR) for some rice varieties studied and partial financial support of this project; Dr. Karen Moldenhauer from the Arkansas Rice Research and Extension Center (University of Arkansas, Fayetteville, AR) for providing some rice varieties, Dr. James Oard (Louisiana State University, Baton Rouge, La) for providing a ‘Taipei-309’ source, and Dr. Katsutoshi Okuno from the Institute of Agrobiological Sciences (Ibaraki, Japan) for seeds of rice line ‘Daw-Dam.’ Research at the Phillips and Lorence groups is supported by grants to GP and AL from the Arkansas Biosciences Institute at Arkansas State University.


  1. Abe T.; Futsuhara Y. Genotypic variability for callus formation and plant regeneration in rice (Oryza sativa L.). Theor Appl Genet 72: 3–10; 1986. doi: 10.1007/BF00261446.CrossRefGoogle Scholar
  2. Al-Khayri J. M.; Shamblin C. E.; McNew R. W.; Anderson E. J. Callus induction and plant regeneration of US rice genotypes as affected by medium constituents. In Vitro Cell Dev Biol Plant 32: 227–232; 1996. doi: 10.1007/BF02822692.CrossRefGoogle Scholar
  3. Bajaj S.; Mohanty A. Recent advances in rice biotechnology—towards genetically superior transgenic rice. Plant Biotechnol J 3: 275–307; 2005. doi: 10.1111/j.1467-7652.2005.00130.x.PubMedCrossRefGoogle Scholar
  4. Dunstan D. I.; Short K. C. Improved growth of tissue cultures of onion, Allium cepa. Physiol Plant 41: 70–72; 1977. doi: 10.1111/j.1399-3054.1977.tb01525.x.CrossRefGoogle Scholar
  5. FAO, Food and Agriculture Organization of the United Nations. FAO-STAT—, 2007. Cited 6 Nov 2007
  6. Gamborg O. L.; Miller R. A.; Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50: 151–158; 1968. doi: 10.1016/0014-4827(68)90403-5.PubMedCrossRefGoogle Scholar
  7. Ge X.; Chu Z.; Lin Y. A tissue culture system for different germplasms of indica rice. Plant Cell Rep 25: 392–402; 2006. doi: 10.1007/s00299-005-0100-7.PubMedCrossRefGoogle Scholar
  8. Hiei Y.; Komari T.; Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35: 205–218; 1997. doi: 10.1023/A:1005847615493.PubMedCrossRefGoogle Scholar
  9. Katiyar-Agarwal S.; Kapoor A.; Grover A. Binary cloning vectors for efficient genetic transformation of rice. Curr Sci 82: 873–876; 2002.Google Scholar
  10. Kennedy D. The importance of rice. Science 296: 13; 2002. doi: 10.1126/science.296.5565.13.PubMedCrossRefGoogle Scholar
  11. Khanna H. K.; Raina S. K. Genotype x culture media interaction effects on regeneration response of three indica rice cultivars. Plant Cell Tiss Org Cult 52: 145–153; 1998. doi: 10.1023/A:1006032303195.CrossRefGoogle Scholar
  12. Khaleda L.; Al-Forkan M. Genotypic variability in callus induction and plant regeneration through somatic embryogenesis of five deepwater rice (Oryza sativa L.) cultivars of Bangladesh. Afric J Biotechnol 5: 1435–1440; 2006.Google Scholar
  13. Komatsu S.; Konishi H.; Shen S.; Yang G. Rice proteomics: A step toward functional analysis of the rice genome. Mol Cell Proteom 2: 1–10; 2003. doi: 10.1074/mcp.R200008-MCP200.Google Scholar
  14. Lee K.; Jeon H.; Kim M. Optimization of a mature embryo-based in vitro culture system for high-frequency somatic embryogenic callus induction and plant regeneration from japonica rice cultivars. Plant Cell Tiss Org Cult 71: 237–244; 2002. doi: 10.1023/A:1020305432315.CrossRefGoogle Scholar
  15. Lin Y. J.; Zhang Q. F. Optimizing the tissue culture conditions for high efficiency transformation of Indica rice. Plant Cell Rep 23: 540–547; 2005. doi: 10.1007/s00299-004-0843-6.PubMedCrossRefGoogle Scholar
  16. Naqvi S. M. S.; Sultana T.; Yasmin T.; Mahmood T.; Akhtar M. S. Efficient embryogenic system from tissue culture of mature embryos for some coarse varieties of rice (Oryza sativa L.). Pakistan J Bot 38: 969–975; 2006.Google Scholar
  17. Redoña E. D.; Mula L. G. Some imperatives and challenges for rice biotechnology in Asian national agricultural research and extension systems. Asian Biotechnol Dev Rev 71: 9–38; 2004.Google Scholar
  18. RoyChowdhury M.; Dabul A.; Hubstenberger J.; Phillips G. Development of in vitro regeneration protocols for Arkansas rice varieties (Oryza sativa L.). J Arkansas Acad Sci 60: 108–112; 2007.Google Scholar
  19. Seraj Z. I.; Islam Z.; Faruque M. O.; Devi T.; Ahmed S. Identification of the regeneration potential of embryo derived calluses from various indica rice varieties. Plant Cell Tiss Org Cult 48: 9–13; 1997. doi: 10.1023/A:1005766513009.CrossRefGoogle Scholar
  20. Taguchi-Shiobara F.; Yamamoto T.; Yano M.; Oka S. Mapping QTLs that control the performance of rice tissue culture and evaluation of derived near-isogenic lines. Theor Appl Genet 112: 968–976; 2006. doi: 10.1007/s00122-005-0200-3.PubMedCrossRefGoogle Scholar
  21. Takeuchi Y.; Abe T.; Sasahara T. Genetic analysis of plant regeneration from seed-derived calli in rice (Oryza sativa L.). Crop Sci 37: 963–965; 1997.Google Scholar
  22. Toki S. Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Molec Biol Rep 15: 16–21; 1997. doi: 10.1007/BF02772109.CrossRefGoogle Scholar
  23. Tsukahara M.; Hirosawa T.; Nagai E.; Kato H.; Ikeda R.; Maruyama K. Genetic analysis of plant regeneration ability in cell suspension cultures of rice (Oryza sativa L.). Breed Sci 45: 425–428; 1995.Google Scholar
  24. Tyagi A. K.; Mohanty A. Rice transformation for crop improvement and functional genomics. Plant Sci 158: 1–18; 2000. doi: 10.1016/S0168-9452(00)00325-3.PubMedCrossRefGoogle Scholar
  25. USDA, United States Department of Agriculture. National Agricultural Statistics Service (NASS) Arkansas Farm Report. Cited 6 Nov 2007; 2006
  26. Yang Y. S.; Zheng Y. D.; Chen Y. L.; Jian Y. Y. Improvement of plant regeneration from long-term cultured calluses of Taipei 309, a model rice variety in in vitro studies. Plant Cell Tiss Org Cult 57: 199–206; 1999. doi: 10.1023/A:1006329323694.CrossRefGoogle Scholar
  27. Yu J.; Wang J.; Lin W.; Li S.; Li H.; Zhou J.; Ni P.; Dong W.; Hu S.; Zeng C.; Zhang J.; Zhang Y.; Li R.; Xu Z.; Li S.; Li X.; Zheng H.; Cong L.; Lin L.; Yin J.; Geng J.; Li G.; Shi J.; Liu J.; Lv H.; Li J.; Wang J.; Deng Y.; Ran L.; Shi X.; Wang X.; Wu Q.; Li C.; Ren X.; Wang J.; Wang X.; Li D.; Liu D.; Zhang X.; Ji Z.; Zhao W.; Sun Y.; Zhang Z.; Bao J.; Han Y.; Dong L.; Ji J.; Chen P.; Wu S.; Liu J.; Xiao Y.; Bu D.; Tan J.; Yang L.; Ye C.; Zhang J.; Xu J.; Zhou Y.; Yu Y.; Zhang B.; Zhuang S.; Wei H.; Liu B.; Lei M.; Yu H.; Li Y.; Xu H.; Wei S.; He X.; Fang L.; Zhang Z.; Zhang Y.; Huang X.; Su Z.; Tong W.; Li J.; Tong Z.; Li S.; Ye J.; Wang L.; Fang L.; Lei T.; Chen C.; Chen H.; Xu Z.; Li H.; Huang H.; Zhang F.; Xu H.; Li N.; Zhao C.; Li S.; Dong L.; Huang Y.; Li L.; Xi Y.; Qi Q.; Li W.; Zhang B.; Hu W.; Zhang Y.; Tian X.; Jiao Y.; Liang X.; Jin J.; Gao L.; Zheng W.; Hao B.; Liu S.; Wang W.; Yuan L.; Cao M.; McDermott J.; Samudrala R.; Wang J.; Wong G. K.; Yang H. The genomes of Oryza sativa a history of duplications. PLoS Biol Feb 32: e38; 2005.CrossRefGoogle Scholar
  28. Zaidi M. A.; Narayanan M.; Sardana R.; Taga I.; Postel S.; Johns R.; McNulty M.; Mottiar Y.; Mao J.; Loit E.; Altosaar I. Optimizing tissue culture media for efficient transformation of different Indica rice genotypes. Agron Res 4: 563–575; 2006.Google Scholar
  29. Zhang L.; Hattori K. Genetic analysis of regeneration ability in rice seed-callus. Gen Genet Syst 71: 313–317; 1996. doi: 10.1266/ggs.71.313.CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2008

Authors and Affiliations

  • A. N. G. Dabul
    • 1
  • H. Belefant-Miller
    • 2
  • M. RoyChowdhury
    • 1
  • J. F. Hubstenberger
    • 1
  • A. Lorence
    • 3
  • G. C. Phillips
    • 1
    Email author
  1. 1.Arkansas Biosciences Institute and College of Agriculture and TechnologyArkansas State UniversityState UniversityUSA
  2. 2.USDA-ARSDale Bumpers National Rice Research CenterStuttgartUSA
  3. 3.Arkansas Biosciences Institute and Department of Chemistry and PhysicsArkansas State UniversityState UniversityUSA

Personalised recommendations