Micropropagation of strawberry tree (Arbutus unedo L.) from adult plants

  • Filomena Gomes
  • Jorge M. Canhoto


Arbutus unedo L. is a species of strawberry tree, widely represented in the Mediterranean climates of southern Europe. Fruits are used to make jellies and a spirit called “medronheira.” Shoot apices and nodal segments from epicormic and coppiced shoots of adult plants were used for plant propagation. Shoot apices from epicormic shoots, which were developed in a growth chamber, showed higher rates of in vitro establishment. The results also indicated that shoot apices are more effective for plant establishment than nodal segments, with rates of establishment significantly higher after 12 wk of culture. Of the three basal media used in combination with 9.0 µM benzyladenine and 0.087 M sucrose, the FS medium with the micronutrients of the Murashige and Skoog medium gave the highest rates of multiplication, especially when the parameter analyzed was the number of clusters formed. When shoot apices from selected adult plants (AL01–AL06) were tested, the multiplication rate was not significantly different among the plants. However, in the conditions tested, shoots from the clones AL1, AL2, and AL3 showed better development, whereas shoots from AL4, AL5, and AL6 showed an impaired development and could not be rooted. Rooting was achieved in all the conditions tested, even in the absence of auxin. The inclusion of an auxin significantly increased root formation, whereas the addition of charcoal did not improve root formation. Rooted plantlets were acclimatized, and some of them are now in the field for further study.


Acclimatization Epicormic shoots Rooting Shoot proliferation 


  1. Anderson, W. C. A revised tissue culture medium for shoot multiplication of Rhododendron. J. Amer. Soc. Hort. Sci. 109: 343–347; 1984.Google Scholar
  2. Arezki O.; Boxus P.; Kevers C.; Gaspar T. Hormonal control of proliferation in meristematic agglomerates of Eucalyptus camaldulensis Dehn. In Vitro Cell Dev. Biol. Plant 36: 398–401; 2000. doi: 10.1007/s11627-000-0071-x.CrossRefGoogle Scholar
  3. Banko, T. J.; Stefani, M. A. In vitro propagation of Oxydendrum arboreum from mature trees. HortScience 24: 683–685; 1989.Google Scholar
  4. Bennett, I. J.; McComb, J. A.; Tonkin, C. M.; Mcdavid, D. A. J. Alternating cytokinins in multiplication media stimulates in vitro shoot growth and rooting of Eucalyptus globulus Labill. Ann. Bot. 74: 53–58; 1994. doi: 10.1006/anbo.1994.1093.CrossRefGoogle Scholar
  5. Canhoto, J. M.; Lopes, M. L.; Cruz, G. S. Somatic embryogenesis in myrtaceous plants. In: Jain S. M.; Gupta P. K.; Newton R. J. (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer, Dordrecht, pp 293–340; 1999.Google Scholar
  6. Canhoto, J. M.; Lopes, M. L.; Sequeira, J.; Gomes, F. Somatic embryogenesis and organogenesis induction from adult trees of A. unedo and A. canariensis. IUFRO Tree Biotechnology, Azores, p 12; 2007.Google Scholar
  7. Cao, X.; Fordahm, I.; Douglas, L.; Hammerschlag, F. A. Sucrose levels influences micropropagation and gene delivery into leaves from in vitro propagated highbush blueberry shoots. Plant Cell Tiss. Org. Cul. 75: 255–259; 2003. doi: 10.1023/A:1025856404937.CrossRefGoogle Scholar
  8. Cardoso, A. V. R. Historial recente da propagação vegetativa do medronheiro no Algarve Contribuição para a criação de um futuro parque de pés-mãe. Graduation Thesis, ISA-UTL, Lisboa; 2004.Google Scholar
  9. Dal Vesco, L. L.; Guerra, M. P. The effectiveness of nitrogen sources in Feijoa somatic embryogenesis. Plant Cell Tiss. Org. Cult. 64: 19–25; 2001. doi: 10.1023/A:1010635926146.CrossRefGoogle Scholar
  10. De Fossard, R. A.; Nitsch, C.; Cresswell, R. J.; Lee, H. C. M. Tissue and organ culture of Eucalyptus. N. Z. J. For. Sci. 4: 267–278; 1974.Google Scholar
  11. Duncan, D. B. Multiple range and multiple F tests. Biometry 11: 1–42; 1955. doi: 10.2307/3001478.CrossRefGoogle Scholar
  12. Ferreira, C.; Dias, J. D.; Canhoto, J. M. In vitro propagation of Leucadendron laureolum x L. salignum cv. Safari Sunset and cytological analysis of the regenerated plantlets. Acta Hortic. 602: 29–38; 2003.Google Scholar
  13. Gajdošová, A.; Ostrolucká, M. G.; Libiaková, G.; Ondrušková, E. Protocol for micropropagation of Vaccinium vitis-idaea L. In: Jain S. M.; Häggman (eds) Protocols for micropropagation of woody trees and fruits. Springer, Berlin, pp 457–464; 2007.Google Scholar
  14. Gautheret, R. J. La culture des tissues végétaux, techniques et réalisations. Masson, Paris1959.Google Scholar
  15. Gomes, F.; Canhoto, J. M. Micropropagation of Eucalyptus nitens Maiden (Shining gum). In Vitro Cell Dev. Biol. Plant 39: 316–321; 2003. doi: 10.1079/IVP2002376.CrossRefGoogle Scholar
  16. Gonzalez, M. V.; Lopez, M.; Valdes, A. E.; Ordas, R. J. Micropropagation of three berry fruit species using nodal segments from field-grown plants. Ann. Appl. Biol. 137: 73–78; 2000. doi: 10.1111/j.1744-7348.2000.tb00059.x.CrossRefGoogle Scholar
  17. Hackett, W. P. Juvenility, maturation and rejuvenation in woody plants. Hortic. Rev. 7: 109–155; 1985.Google Scholar
  18. Hansen, E.; Olsen, J. E.; Junttila, O. Gibberellins and subapical cell divisions in relation to bud set and bud break in Salix pentrana. J. Plant Growth Reg. 18: 167–170; 1999. doi: 10.1007/PL00007065.CrossRefGoogle Scholar
  19. Hartman, H. T.; Kester, D.; Davies, F. T. Jr; Geneve, R. L. Plant propagation: principles and practices, 6th edn. Prentice Hall Int, Upper Saddle; 1997.Google Scholar
  20. Heywood, V. H. Flowering plants of the world. B.T. Batsford, Londres; 1993.Google Scholar
  21. Ibañez, A.; Valero, M.; Morte, A. Establishment and in vitro clonal propagation of the Spanish autochthonous table grapevine cultivar Napoleon: an improved system where proliferating cultures alternate with rooting ones. Ann. Biol. 27: 211–220; 2005.Google Scholar
  22. Isutsa, D. K.; Pritts, M. P.; Mudge, K. W. Rapid propagation of blueberry plants using ex-vitro rooting and controlled acclimatization of micropropagules. HortScience 29: 1124–1126; 1994.Google Scholar
  23. Jain, S. M.; Häggman, H. Protocols for micropropagation of woody trees and fruits. Springer, Berlin; 2007.CrossRefGoogle Scholar
  24. Kohlenbach, H. W.; Wernicke, W. Investigations on the inhibitory effect of agar and the function of active carbon in anther culture. Z. Pflanzenphysiol. 84: 463–472; 1978.Google Scholar
  25. Lloyd, G. B.; McCown, B. H. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc. Int. Plant Prop. Soc. 30: 421–427; 1980.Google Scholar
  26. Mackay, W. A. Micropropagation of Texas madrone, Arbutus xalapensis HBK. HortScience 31: 1028–1029; 1996.Google Scholar
  27. McComb, J. A.; Bennett, I. J. Eucalypts (Eucalyptus spp.). In: Bajaj Y. P. S. (ed) Biotechnology in agriculture and forestry vol 1. Trees I. Springer, Berlin, pp 340–362; 1986.Google Scholar
  28. Mendes, M. L. A. Multiplicação vegetativa in vitro de medronheiro. Master Thesis, ISA-UTL, Lisboa; 1997.Google Scholar
  29. Mereti, M.; Grigoriadou, K.; Nanos, G. D. Micropropagation of the strawberry tree, Arbutus unedo L. Sci. Hortic. 93: 143–148; 2002. doi: 10.1016/S0304-4238(01)00330-2.CrossRefGoogle Scholar
  30. Metaxas, D. J.; Syros, T. D.; Yupsanis, T.; Economou, A. E. Peroxidases during adventitious rooting in cuttings of Arbutus unedo and Taxus baccata as affected by plant genotype and growth regulator treatment. Plant Growth Regul. 44: 257–266; 2004. doi: 10.1007/s10725-004-5931-7.CrossRefGoogle Scholar
  31. Murashige, T. Plant propagation through tissue culture. Ann. Rev. Plant Physiol. 25: 135–166; 1974. doi: 10.1146/annurev.pp.25.060174.001031.CrossRefGoogle Scholar
  32. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant 15: 473–497; 1962. doi: 10.1111/j.1399-3054.1962.tb08052.x.CrossRefGoogle Scholar
  33. Mylona, P.; Dolan, L. The root meristem. In: McManus M. T.; Weit B. E. (eds) Meristematic tissues in plant growth and development. Sheffield Academic, Sheffield, pp 279–292; 2002.Google Scholar
  34. Neppi, M. Alberi ed arbusti della flora mellifera della regione mediterrânea. In: Piotto, B.; Noi, A. (eds) Propagazione per seme di alberi e arbusti della flora mediterranea, Dipartimento Prevenzione e Risanamento Ambientali, Manuale ANPA (Agenz. Naz. per la Protezi. dell’Ambiente), pp 44–49; 2001.Google Scholar
  35. Niedz, R. P. Growth of embryogenic sweet orange callus on media varying in the ratio of nitrate to ammonium nitrogen. Plant Cell Tiss. Org. Cul. 39: 1–5; 1994. doi: 10.1007/BF00037584.CrossRefGoogle Scholar
  36. Ostrolucká, M. G.; Gajdošová, A.; Libiaková, G.; Hrubíková, K.; Bezo, M. Protocol for micropropagation of selected Vaccinium. In: Jain S. M.; Häggman (eds) Protocols for micropropagation of woody trees and fruits. Springer, Berlin, pp 445–455; 2007.CrossRefGoogle Scholar
  37. Pabuccuoglu, A.; Kivcak, B.; Bas, M.; Mert, T. Antioxidant activity of Arbutus unedo leaves. Fitoterapia 74: 597–599; 2003. doi: 10.1016/S0367-326X(03)00110-2.PubMedCrossRefGoogle Scholar
  38. Panteleitchouk, A. V. Micropropagação de alfarrobeira (Ceratonia siliqua L.) variedade Aida. Estudos químicos e de microscopia. Master Thesis, University of Coimbra, Portugal; 2002.Google Scholar
  39. Piotto, B., Piccini, C., Arcadu, P. La ripresa della vegetazione dopo gli incendi nella regione mediterrânea. In: Piotto, B.; Noi, A. (eds) Propagazione per seme di alberi e arbusti della flora mediterranea, Dipartimento Prevenzione e Risanamento Ambientali, Manuale ANPA (Agenz. Naz. per la Protezi. dell’Ambiente), pp 32–38; 2001.Google Scholar
  40. Rathore, J. S.; Rathore, V.; Shekhawat, N. S.; Singh, R. P.; Liler, G.; Mahendra, P.; Dagla, H. R. Micropropagation of woody plants. In: Srivastava P. S.; Narula A.; Srivastava S. (eds) Plant biotechnology and molecular markers. Anamaya, New Dehli, pp 195–205; 2004.Google Scholar
  41. Salisbury, F. B.; Ross, C. W. Plant physiology. 4th ed. Wadsworth, Belmont; 1992.Google Scholar
  42. Torres, J. A.; Valle, F.; Pinto, C.; Garcia-Fuentes, A.; Salazar, C.; Cano, E. Arbutus unedo communities in southern Iberian Peninsula Mountains. Plant Ecol. 160: 207–223; 2002. doi: 10.1023/A:1015864821706.CrossRefGoogle Scholar
  43. Young, M. J.; Cameraon, J. S. Influence of growth regulators and nitrogen form on micropropagation of rabbiteye blueberries. Fruit Var. J. 39: 16–18; 1985.Google Scholar
  44. Zar, J. H. Biostatistical analysis. 3rd ed. Prentice-Hall, New Jersey; 1996.Google Scholar
  45. Ziv, M. In vitro hardening and acclimatization of tissue culture plants. In: Withers L. A.; Alderson P. G. (eds) Plant tissue culture and its agricultural application. Butterworth, London, pp 187–196; 1986.Google Scholar

Copyright information

© The Society for In Vitro Biology 2008

Authors and Affiliations

  1. 1.CERNAS, Departamento FlorestalEscola Superior Agrária de Coimbra, BencantaCoimbraPortugal
  2. 2.Plant Biotechnology Laboratory, Centre for Pharmaceutical Research, Department of BotanyUniversity of CoimbraCoimbraPortugal
  3. 3.Departamento de Botânica, FCTUCCoimbraPortugal

Personalised recommendations