Quantitative analysis of transgenes in cassava plants using real-time PCR technology

  • J. Beltrán
  • H. Jaimes
  • M. Echeverry
  • Y. Ladino
  • D. López
  • M. C. Duque
  • P. Chavarriaga
  • J. Tohme
Genetic transformation

Abstract

To speed up the molecular analysis of cassava transgenic plants, we developed real-time polymerase chain reaction (PCR)-based methods that could be implemented as a tool in the primary scrutiny of putative transgenic plants. We tested for the presence of transgenes, estimated copy number, and quantified messenger RNA (mRNA) levels of genes introduced through Agrobacterium. Copy numbers for the genes ß-glucuronidase and hygromycin phosphortransferase were estimated in 15 transgenic lines. Most lines contained one or two copies of each gene; in some, the copy number was different for the two genes, suggesting rearrangements of the transferred DNA. Six of the 15 lines were analyzed by Southern blot. The copy number so estimated was concordant in most cases. Although real-time PCR was efficient for classifying transgenic lines with one or more transgenes inserted, for conclusive analysis of gene copy number, i.e., in a potential breeding line, the Southern blot may still be required. The transcript levels from both genes were determined in eight lines. High, medium, and low levels of mRNA expression were detected. No direct relationship between copy number and expression level of transgenes was obvious, suggesting that factors like position effects or DNA rearrangements led to differential expression. Quantitative mRNA expression data for the ß-glucuronidase gene agreed with results from histochemical staining. With real-time PCR we could detect high levels of transgene expression in 3-y-old cassava plants maintained and propagated as clones in the greenhouse. This is the first time that real-time PCR is reported to be used for transgene analysis in cassava.

Keywords

Manihot esculenta Transgene copy number Transcript level Gene silencing Transgene rearrangement Melting curve 

References

  1. Altschul, S. F.; Madden, T. L.; Schaffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–402; 1997.PubMedCrossRefGoogle Scholar
  2. Bhat, S. R.; Srinivasan, S. Molecular and genetic analyses of transgenic plants: considerations and approaches. Plant Sci. 163: 673–681; 2002.CrossRefGoogle Scholar
  3. Bubner, B.; Baldwin, I. T. Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell. Rep. 23: 263–271; 2004 doi:10.1007/s00299-004-0859-y.PubMedCrossRefGoogle Scholar
  4. Czechowski, T.; Bari, R. P.; Stitt, M.; Scheible, W. R.; Udvardi, M. K. Real-time RT-PCR profiling for over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J. 38: 366–379; 2004 doi:10.1111/j.1365-313X.2004.02051.x.PubMedCrossRefGoogle Scholar
  5. Dai, S.; Zheng, P.; Marmey, P.; Zhang, S.; Tian, W. Z.; Chen, S. Y.; Beachy, R. N.; Fau, C. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol. Breed. 7: 25–33; 2001.CrossRefGoogle Scholar
  6. Dellaporta, S. L.; Wood, J.; Hicks, J. B. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1: 19–21; 1983.CrossRefGoogle Scholar
  7. Elmayan, T.; Vaucheret, H. Expression of single copies of a strongly expressed 35 s transgene can be silenced post-transcriptionally. Plant J. 9: 787–797; 1996.CrossRefGoogle Scholar
  8. Fagard, M.; Vaucheret, H. (Trans) gene silencing in plants: How many mechanisms? Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 167–194; 2000.PubMedCrossRefGoogle Scholar
  9. Flavell, R. B. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc. Natl. Acad. Sci. U.S.A. 91: 3490–3496; 1994.PubMedCrossRefGoogle Scholar
  10. Gachon, C.; Mingam, A.; Charrier, B. Real-time PCR: what relevance to plant studies? J. Expl. Bot. 55: 1445–1454; 2004.CrossRefGoogle Scholar
  11. Holland, P. M.; Abramson, R. D.; Watson, R.; Gelfand, D. H. Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 88: 7276–7280; 1991.PubMedCrossRefGoogle Scholar
  12. Ingham, D. J.; Beer, S.; Money, S.; Hansen, G. Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31: 132–140; 2001.PubMedGoogle Scholar
  13. Jaimes, H. A. Mejora del protocolo para la transformación genética de yuca (Manihot esculenta Crantz) mediada por Agrobacterium tumefaciens usando callo embriogénico friable. Thesis. Department of Biology, Universidad del Valle, Cali, Colombia, 92 p; 2005.Google Scholar
  14. Jefferson, R. A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant. Mol. Biol. Rep. 5: 387–405; 1987.CrossRefGoogle Scholar
  15. Jørgensen, K.; Bak, S.; Busk, P. K.; Sørensen, C.; Olsen, C. E.; Puonti-Kaerlas, J.; Møller, B. L. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers: Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Physiol. 139: 363–374; 2005.PubMedCrossRefGoogle Scholar
  16. Kumpatla, S. P.; Chandrasekharan, M. B.; Iyer, L. M.; Li, G.; Hall, T. C. Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci. 3: 97–104; 1998.CrossRefGoogle Scholar
  17. Li, Z.; Hansen, J. L.; Liu, Y.; Zemetra, R. S.; Berger, P. H. Using real-time PCR to determine copy number in wheat. Plant Mol. Biol. Rep. 22: 179–188; 2004.CrossRefGoogle Scholar
  18. Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{{\Delta \Delta {\text{CT}}}} \) method. Methods 25: 402–408; 2001 doi:10.1006/meth.2001.1262.PubMedCrossRefGoogle Scholar
  19. Mason, G.; Provero, P.; Vaira, A. M.; Accotto, G. P. Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol. 2: 20; 2001.CrossRefGoogle Scholar
  20. Miyamoto, T.; Nakamura, T.; Nagao, I.; Obokata, J. Quantitative analysis of transiently expressed mRNA in particle-bombarded tobacco seedlings. Plant Mol. Biol. Rep. 18: 101–107; 2000.CrossRefGoogle Scholar
  21. Olsen, K. M.; Schaal, B. A. Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc. Natl. Acad. Sci. U.S.A. 96: 5586–5591; 1999.PubMedCrossRefGoogle Scholar
  22. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 299: e45; 2001.PubMedCrossRefGoogle Scholar
  23. Sambrook, J.; Fritsch, E. F.; Maniatis, Y. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA1989.Google Scholar
  24. Schaart, J. G.; Salentijn, E. M. J.; Krens, F. A. Tissue-specific expression of the β-glucuronidase reporter gene in transgenic strawberry (Fragaria × ananassa) plants. Plant Cell Rep. 21: 313–319; 2002 doi:10.1007/s00299-002-0514-4.CrossRefGoogle Scholar
  25. Shou, H.; Frame, B. R.; Whitham, S. A.; Wang, K. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol. Breed. 13: 201–208; 2004.CrossRefGoogle Scholar
  26. Song, P.; Cai, C. Q.; Skokut, M.; Kosegi, B. D.; Petolino, J. F. Quantitative real-time PCR as a screening tool for estimating transgene copy number in WHISKERS™-derived transgenic maize. Plant Cell Rep. 20: 948–954; 2002 doi:10.1007/s00299-001-0432-x.CrossRefGoogle Scholar
  27. Soni, R.; Murray, J. A. H. Isolation of intact DNA and RNA from plant tissues. Anal. Biochem. 218: 474–476; 1994.PubMedCrossRefGoogle Scholar
  28. Taylor, N. J.; Edwards, M.; Kiernan, R. J.; Davey, C.; Blakesley, D.; Henshaw, G. G. Development of friable embryogenic callus and embryogenic suspension cultures in cassava (Manihot esculenta Crantz). Nature Biotech. 14: 726–730; 1996.CrossRefGoogle Scholar
  29. Taylor, N.; Chavarriaga, P.; Raemakers, K.; Siritunga, D.; Zhang, P. Development and application of transgenic technologies in cassava. Plant Mol. Biol. 56: 671–688; 2004.PubMedCrossRefGoogle Scholar
  30. Toplak, N.; Okršlar, V.; Stanič-Racman, D.; Gruden, K.; Zěl, J. A high-throughput method for quantifying transgene expression in transformed plants with real-time PCR analysis. Plant Mol. Biol. Rep. 22: 237–250; 2004.CrossRefGoogle Scholar
  31. Travella, S.; Ross, S. M.; Harden, J.; Everett, C.; Snape, J. W.; Harwood, W. A. A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep. 23: 780–789; 2005.PubMedCrossRefGoogle Scholar
  32. Tzu-Ming, P. Current status and detection of genetically modified organism. Journal of Food and Drug Analysis 10: 229–241; 2002.Google Scholar
  33. Vaucheret, H.; Fagard, M. Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet. 17: 29–35; 2001.PubMedCrossRefGoogle Scholar
  34. Vaucheret, H.; Béclin, C.; Elmayan, T.; Feuerbach, F.; Godon, C.; Morel, J. B.; Mourrain, P.; Palauqui, J. C.; Vernhettes, S. Transgene induced gene silencing in plants. Plant J. 16: 651–659; 1998.PubMedCrossRefGoogle Scholar
  35. Weng, H.; Pan, A.; Yang, L.; Zhang, C.; Liu, Z.; Zhang, D. Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay with HMG I/Y as an endogenous reference gene. Plant Mol. Biol. Rep. 22: 289–300; 2004.CrossRefGoogle Scholar
  36. Wilkening, S.; Bader, A. Quantitative real-time polymerase chain reaction: methodical analysis and mathematical model. J. Biomol. Tech. 15: 107–111; 2004.PubMedGoogle Scholar
  37. Yang, L.; Ding, J.; Zhang, C.; Jia, J.; Weng, H.; Liu, W.; Zhang, D. Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep. 23: 759–763; 2005 doi:10.1007/s00299-004-0881-0.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2008

Authors and Affiliations

  • J. Beltrán
    • 1
  • H. Jaimes
    • 1
  • M. Echeverry
    • 2
  • Y. Ladino
    • 1
  • D. López
    • 1
  • M. C. Duque
    • 1
  • P. Chavarriaga
    • 1
  • J. Tohme
    • 1
  1. 1.Agrobiodiversity and Biotechnology ProjectInternational Center for Tropical Agriculture (CIAT)CaliColombia
  2. 2.Laboratory of Plant BiotechnologyUniversidad de Puerto Rico, Recinto Universitario de MayagüezMayagüezPuerto Rico

Personalised recommendations