Biological functions of antioxidants in plant transformation

Genetic transformation

Abstract

Browning and necrosis of transformed cells/tissues, and difficulty to regenerate transgenic plants from the transformed cells/tissues (recalcitrance) are common in Agrobacterium-mediated transformation process in many plant species. In addition, most crop transformation methods that use NPTII selection produce a significant number of nontransgenic shoots, called “shoot escapes” even under stringent selection conditions. These common problems of plant transformation, (browning and necrosis of transformed cells/tissues, recalcitrance, and the occurrence of shoot escapes) severely reduces transformation efficiency. Recent research indicates that reactive oxygen species (ROS) such as superoxide radical \(\left( {{\text{O}}_{\text{2}}^{\text{ - }} } \right)\), the hydrogen peroxide (H2O2), the hydroxyl radical (OH′), and the peroxyl radical (\({\text{RO}}_2 ^\prime \)) may be playing an important role in tissue browning and necrosis during transformation. This review examines the role of ROS in in vitro recalcitrance and genetic transformation and the opportunities to improve transformation efficiency using antioxidants.

Keywords

Agrobacterium Reactive oxygen species Oxidative burst Necrosis 

Notes

Acknowledgments

The author thanks Dr. Richard E. Veilleux and Ms. Helen J. Hodges for English editing of the manuscript.

References

  1. Badia Nkanka, K. Effect of vitamin E on in vitro propagation of Eucalyptus rudis, Larix x Eurolepis and Quercus borealis. Bulletin des Recherches Agronomiques de Gembloux 17(3):219–226; 1982.Google Scholar
  2. Bailey, E.; Deighton, N.; Clulow, S. A.; Goodman, B. A.; Benson, E. E. Changes in free radical profiles during the callogenesis of responsive and recalcitrant potato genotypes. Proc. R. Soc. Edinburgh, Sect. B 102:243–246; 1994.Google Scholar
  3. Benson, E. E. In vitro plant recalcitrance: an introduction. In Vitro Cell. Dev. Biol. Plant 36:141–148; 2000a.Google Scholar
  4. Benson, E. E. Do free radicals have a role in plant tissue culture recalcitrance? In Vitro Cell. Dev. Biol. Plant 36:163–170; 2000b.Google Scholar
  5. Benson, E. E.; Lynch, P. T.; Jones, J. Variation in free radical-mediated damage in rice cell suspensions with different embryogenic potentials. Planta 188:296–305; 1992.Google Scholar
  6. Benson, E. E.; Roubelakis-Angelakis, K. A. Fluorescent lipid peroxidation products and antioxidant enzymes in tissue cultures of Vitis vinifera L. Plant Sci. 84:83–90; 1992.Google Scholar
  7. Benson, E. E.; Roubelakis-Angelakis, K. A. Oxidative stress in recalcitrant tissue cultures of grapevine. Free Radic. Biol. Med. 16:355–362; 1994.PubMedGoogle Scholar
  8. Betteridge, D. J. What is oxidative stress? Metabolism 49:3–8; 2000.PubMedGoogle Scholar
  9. Boya, P.; Gonzalez-Polo, R. A.; Casares, N.; Perfettini, J.L.; Dessen, P.; Larochette, N; Metivier, D.; Meley, D.; Souquere, S.; Yoshimori, T. et al. Inhibition of macroautophagy triggers apoptosis. Mol. Cell Biol. 25:1025–1040; 2005.PubMedGoogle Scholar
  10. Bremner, D. H.; Magill, W. J.; Benson, E. E. An evaluation of analytical methods for the detection of secondary oxidation products in dedifferentiated plant cultures. Phyton 37:39–44; 1997.Google Scholar
  11. Breusegem, F. V.; Dat, J. F. Reactive oxygen species in plant cell death. Plant Physiol. 141(2):384–390; 2006.PubMedGoogle Scholar
  12. Cervera, M.; Juarez, J.; Navarro, A.; Pina, J. A.; Duran-Vila, N.; Navarro, L.; Pena, L. Genetic transformation and regeneration of mature tissue of woody fruit plants bypassing the juvenile stage. Transgenic Res. 7:51–59; 1998.Google Scholar
  13. Chakrabarty, D.; Park, S., Y.; Ali, M., B.; Shin, K., S.; Paek, K., Y. Hyperhydricity in apple: ultrastuctural and physiological aspects. Tree Physiol. 26(3):377–388; 2006.PubMedGoogle Scholar
  14. Chakrabarty, R.; Viswakarma, N.; Bhat, S. R.; Kirti, P. B.; Singh, B. D.; Chopra, V. L. Agrobacterium-mediated transformation of cauliflower: optimization of protocol and development of Bt-transgenic cauliflower. J. Biosci. 27:495–502; 2002.PubMedGoogle Scholar
  15. Chance, B.; Sies, H.; Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59:527–605; 1979.PubMedGoogle Scholar
  16. Chen, S.; Dickman, M. B. Bcl-family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. J. Exp. Bot. 8:1–7; 2004.Google Scholar
  17. Chin, H., F.; Krishnapillay, B.; Alang, Z., C. Media for embryo culture of some tropical recalcitrant species. Pertanika 11(3):357–363; 1988.Google Scholar
  18. Chung, J. D.; Lee, J. H.; Jee, S. O.; Kim, C. K. Effect of several additives on medium browning and mericlone growth of temperate Cymbidium species. Korean Journal of Horticultural Science & Technology 16(2):239–241; 1998.Google Scholar
  19. Dan, Y. A novel plant transformation technology—Lipoic acid. In vitro cell. Dev. Biol. Plant 42:18-A; 2006 (Abstract).Google Scholar
  20. Dan, Y.; Munyikawa, T. R. I.; Kimberly, A. R.; Rommens, C. M. T. Use of lipoic acid in plant culture media. US Patent Pub. No.: US 2004/0133938 A1; 2004.Google Scholar
  21. Das, D.; Reddy, M.; Upadhyaya, K.; Sopory, S. An efficient leaf-disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Rep. 20(11):999–1005; 2002.Google Scholar
  22. Davies, M. J.; Gilbert, B. C.; Haywood, R. M. Radical-induced damage to bovine serum albumin: role of the cysteine residue. Free Radic. Res. Commun. 18:353–367; 1993.PubMedCrossRefGoogle Scholar
  23. Dean, R. T.; Gieseg, S.; Davies, M. J. Reactive species and their accumulation on radical-damage proteins. Trends Biochem. Sci. 18:437–441; 1993.PubMedGoogle Scholar
  24. Deighton, N.; Magill, W. J.; Bremner, D. H.; Benson, E. E. Malondialdehyde and 4 hydroxy-2-nonenal in plant tissue cultures: LC-MS determination of 2,4 dinitrophenylhydrazone derivatives. Free Radic. Res. 27:255–265; 1997.PubMedGoogle Scholar
  25. del Pozo, O.; Lam, E. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr. Biol. 8:1129–1132; 1998.PubMedGoogle Scholar
  26. Deng, W.; Pu, X. A.; Goodman, R. N.; Gordon, M. P.; Nester, E. W. T-DNA genes responsible for inducing a necrotic response on grape vines. Mol. Plant Microb. Interact. 8:538–548; 1995.Google Scholar
  27. Desjardins, Y.; Gosselin, A. The effect of hormonal concentrations, culture medium and an antioxidant on the shoot-doubling time for the raspberry cultivar Madawaska grown in vitro. Can. J. Plant. Sci. 67(3):863–869; 1987.CrossRefGoogle Scholar
  28. Dickman, M. B.; Park, V. K.; Oltersdorf, T.; Li, W.; Clemente, T.; French, R. Abrogation of disease development in plants expressing animal anti-apoptotic genes. Proc. Natl. Acad. Sci. U S A 98:6957–6962; 2001.PubMedGoogle Scholar
  29. Dietrich, R. A.; Richberg, M. H.; Schmidt, R.; Dean, C.; Dangl, J. L. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell 88:685–694; 1997.PubMedGoogle Scholar
  30. Dutta, G. S.; Datta, S. Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration. Biol. Plant. 47(2):179–183; 2003.Google Scholar
  31. Elias, P. S. Food irradiation. In: Kotsonis, F. N.; Mackey, M.; Hjelle, J., eds. Nutritional toxicology. New York: Raven Press; 1994:149–180.Google Scholar
  32. Enríquez-Obregón, G., A.; Prieto-Samsónov, D., L.; Riva, G., A.; de la Pérez, M.; Selman-Housein, G.; Vázquez-Padrón, R., I. Agrobacterium-mediated japonica rice transformation: a procedure assisted by an antinecrotic treatment. Plant Cell Tissue Organ Cult. 59(3):159–168; 1999.Google Scholar
  33. Enríquez-Obregón, G., A.; Trujillo, L., E.; Menéndez, C.; Vazquez, R., I.; Tiel, K.; Dafhnis, F.; Arrieta, J.; Selman, G.; Hernández, L. Sugarcane (Saccharum hybrid) genetic transformation mediated by Agrobacterium tumefaciens: production of transgenic plants expressing proteins with agronomic and industrial value. Plant genetic engineering: towards the third millennium: Proceedings of the International Symposium on Plant Genetic Engineering, Havana, Cuba, 6–10 December, 2000, pp. 76–81.Google Scholar
  34. Enriquez-Obregon, G. A.; Vazquez-Padron, R. I.; Prieto-Samsonov, D. L.; Perez, M.; Selman-Housein, G. Genetic transformation of sugarcane by Agrobacterium tumefaciens using antioxidants compounds. Biotecnol. Apl. 14:169–174; 1997.Google Scholar
  35. Enriquez-Obregon, G. A.; Vazquez-Padron, R. I.; Prieto-Samsonov, D. L.; de a Riva, G. A.; Selman-Housein, G. Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206:20–27; 1998.Google Scholar
  36. Epple, P.; Mack, A. A.; Morris, V. R. F.; Dangl, J. L. Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plantspecific zinc finger proteins. Proc. Natl. Acad. Sci. U S A 100:6831–6836; 2003.PubMedGoogle Scholar
  37. Fahey, R. C. Protection of DNA by thiols. Pharmacol. Ther. 39:101–108; 1988.PubMedGoogle Scholar
  38. Feng, F. Study on the control of browning of longan in vitro culture. South China Fruits 6:49–51; 2004.Google Scholar
  39. Finkel, T. Oxygen radicals and signaling. Curr. Opin. Cell Biol. 10:248–253; 1998.PubMedGoogle Scholar
  40. Frame, B. R.; Shou, H.; Chikwamba, R. K.; Zhang, Z.; Xiang, C.; Fonger, T. M.; Pegg, S. E. K.; Li, B.; Nettleton, D. S.; Pei, D.; Wang, K. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129:13–22; 2002.PubMedGoogle Scholar
  41. Freitas, D. S. D.; Coelho, M. C. F.; Souza Jr, M. T.; Marques, A.; Ribeiro, B. M. Introduction of the anti-apoptotic baculovirus p35 gene in passion fruit induces herbicide tolerance, reduced bacterial lesions, but does not inhibits passion fruit woodiness disease progress induced by cowpea aphid-borne mosaic virus (CABMV). Biotechnol. Lett. 29:79–87; 2007.PubMedGoogle Scholar
  42. Fridovich, I. Superoxide dismutases. An adaptation to a paramagnetic gas. J. Biol. Chem. 264:7761–7764; 1989.PubMedGoogle Scholar
  43. Furchgott, R. F. A research trail over half a century. Ann. Rev. Pharmacol. Toxicol. 35:1–27; 1995.Google Scholar
  44. Goodman, R. N.; Novacky, A. J. The hypersensitive reaction in plants to pathogens...a resistant phenomenon. St. Paul, Minnesota: APS PRESS; 1994:240.Google Scholar
  45. Greenberg, J. T.; Guo, A.; Klessig, D. F.; Ausubel, F. M. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77:551–563; 1994.PubMedGoogle Scholar
  46. Greenberg, J. T.; Yao, N. The role and regulation of programmed cell death in plant–pathogen interactions. Cell Microbiol. 6:201–211; 2004.PubMedGoogle Scholar
  47. Gupta, S., D.; Datta, S. Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration. Biol. Plant. 47(2):179–183; 2003.Google Scholar
  48. Gustavo, A. R.; Gonzalez-Cabrera, J.; Vazquez-Padron, R.; Ayra-Pardo, C. Agrobacterium tumefaciens: a natural tool for plant transformation. Electronic J. Biotechnol. 1(3):118–133; 1998.Google Scholar
  49. Halliwell, B. How to characterize a biological anti-oxidant. Free Radic. Res. Commun. 9:1–32; 1990.PubMedGoogle Scholar
  50. Halliwell , B.; Gutteridge, J. M. C. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186:1–85; 1990.PubMedGoogle Scholar
  51. Halliwell, B. Antioxidants in human health and disease. Ann. Rev. Nutrition 16:33–50; 1996.Google Scholar
  52. Halliwell, B. Antioxidant defence mechanisms: From the beginning to the end (of the beginning). Free Radic. Res. 31:261–272; 1999.PubMedGoogle Scholar
  53. Halliwell, B.; Aeschbach, R.; Loliger, J.; Aruoma, O. I. The characterization of antioxidants. Food Chem. Toxicol. 33(7):601–617(617); 1995.PubMedGoogle Scholar
  54. Halliwell, B.; Gutteridge, J. M. C. Free Radicals Biology and Medicine. Oxford: Clarendon Press; 1989.Google Scholar
  55. Hansen, G. Evidence for Agrobacterium-induced apoptosis in maize cells. Mol. Plant-Microb Interact. 13:649–657; 2000.Google Scholar
  56. Igene, J. O.; King, J. A.; Pearson, A. M.; Gray, J. I. Influence of heme pigments, nitrates and non-heme iron on development of warmed-over flavor (WOF) in cooked meat. J. Agric. Food Chem. 27:832–842; 1979.Google Scholar
  57. James, D. J.; Passey, A. J.; Barbara, D. J.; Bevan, M. Genetic transformation of apple (Malus pumila Mill) using a disarmed Ti-binary vector. Plant Cell Rep. 7:658–661; 1989.Google Scholar
  58. Kamata, H.; Hirata, H. Redox regulation of cellular signaling. Cell Signal 11:1–14; 1999.PubMedGoogle Scholar
  59. Kang, C. H.; Jung, W. Y.; Kang, Y. H.; Kim, J. Y.; Kim, D. G.; Jeong, J. C.; Baek, D. W.; Jin, J. B.; Lee, J. Y.; Kim, M. O. et al. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ. 13:84–95; 2006.PubMedGoogle Scholar
  60. Kanner, J.; German, J. B.; Kinsella, J. E. Initiation of lipid peroxidation in biological systems. CRC Crit. Rev. Food Sci. Nutr. 25:317–364; 1987.CrossRefGoogle Scholar
  61. Klionsky, D. J. The molecular machinery of autophagy: unanswered questions. J. Cell Sci. 118:7–18; 2005.PubMedGoogle Scholar
  62. Kuta, D. D.; Tripathi, L. Agrobacterium-induced hypersensitive necrotic reaction in plant cells: a resistance response against Agrobacterium-mediated DNA transfer. Afr. J. Biotechnol. 4(8):752–757; 2005.Google Scholar
  63. Lee, K. W.; Lee, S. H.; Lee, D. G.; Woo, H. S.; Kim, D. H.; Choi, M. S.; Kim, K. Y.; Lee, H. S.; Lee, B. H. Effect of plant growth regulators and antioxidants on callus induction and plant regeneration from seed culture of orchardgrass. Journal of the Korean Society of Grassland Science 25(3):191–198; 2005.Google Scholar
  64. Levine, B.; Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6:463–477; 2004.PubMedGoogle Scholar
  65. Li, W.; Dickman, M. B. Abiotic stress induces apoptotic-like features in tobacco that is inhibited by expression of human Bcl-2. Biotechnol. Lett. 26:87–95; 2004.PubMedGoogle Scholar
  66. Lincoln, J. E.; Richael, C.; Overduin, B.; Smith, K.; Bostock, R.; Gilchrist, D. G. Expression of the anti-apoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proc. Natl. Acad. Sci. U S A 99: 15217–15221; 2002.PubMedGoogle Scholar
  67. Liu, Y.; Schiff, M.; Czymmek, K.; Talloczy, Z.; Levine, B.; Dinesh-Kumar, S. P.: Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577; 2005.PubMedGoogle Scholar
  68. Marnett, L. J. Oxyradicals and DNA damage. Carcinogenesis 21:361–370; 2000.PubMedGoogle Scholar
  69. Miller, D. K.; Smith, V. L.; Kanner, J.; Miller, D. D.; Lawless, H. T. Lipid oxidation and warmed-over aroma in cooked ground pork from swine fed increasing levels of iron. J. Food Sci. 59:751–756; 1994.Google Scholar
  70. Moore, G. A.; Jacono, C. C.; Neidigh, J. L.; Lawrence, S. D.; Cline, K. Agrobacterium-mediated transformation of citrus stem segments and regeneration of transgenic plants. Plant Cell Rep. 11:238–242; 1992.Google Scholar
  71. Mourgues, F.; Chevreau, E.; Lambert, C.; Bondt, A. Efficient Agrobacterium-mediated transformation and recovery of transgenic plants from pear (Pyrus communis L.). Plant Cell Rep. 16:245–249; 1996.Google Scholar
  72. Mukai, K.; Morimoto, H.; Okauchi, Y.; Nagaoka, S. Kinetic study of reactions between tocopheroxyl radicals and fatty acids. Lipids 28:753–756; 1993.Google Scholar
  73. Murkute, A., A.; Patil, S.; Mayakumari. Exudation and browning in tissue culture of pomegranate. Agricultural Science Digest 23(1):29–31; 2003.Google Scholar
  74. Nagata, S. Apoptosis by death factor. Cell 85:817–827; 1997.Google Scholar
  75. Nakagami H.; Kiegerl, S.; Hirt, H. OMTK1, a novel MAPKKK, channels oxidative stress signaling through directMAPK interaction. J. Biol. Chem. 279: 26959–26966; 2004.PubMedGoogle Scholar
  76. Nomura, K.; Matsumoto, S.; Masuda, K.; Inoue, M. Reduced glutathione promotes callus growth and shoot development in a shoot tip culture of apple root stock M.26. Plant Cell Rep. 17(8):597–600; 1998.Google Scholar
  77. Nordberg, J.; Arner, E. S. J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biol. Med. 31:1287–1312; 2001.Google Scholar
  78. Olhoft, P. M.; Flagel, L. E.; Donovan, C. M.; Somers, D. A. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735; 2003.PubMedGoogle Scholar
  79. Olhoft, P. M.; Lin, K.; Galbraith, J.; Nielsen, N. C.; Somers, D. A. The role of thiol compounds increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep. 20:731–737; 2001a.Google Scholar
  80. Olhoft, P. M.; Somers, D. A. l-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep. 20:706–711; 2001b.Google Scholar
  81. Packer, L.; Tritschler, H. Alpha-lipoic acid: The metabolic antioxidant. Free Radic. Biol. Med. 20: 625–626; 1996.PubMedGoogle Scholar
  82. Packer, L.; Tritschler, H.; Wessel, K. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radical Biol. Med. 22:359–378; 1997.Google Scholar
  83. Packer, L.; Witt, E.; Tritschler, H. Alpha-lipoic acid as a biological antioxidant. Free Rad. Biol. Med. 19:227–250; 1995.PubMedGoogle Scholar
  84. Palmer, R. M. J.; Ferrige, A. G.; Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526; 1987.PubMedGoogle Scholar
  85. Park, H. R.; Jung, H. H.; Kim, K. S. Ascorbic acid and citric acid reduce explant darkening during shoot tip culture of Adonis amurensis. Hortic. Environ. Biotechnol. 47(1):41–44; 2006.Google Scholar
  86. Patel, R. P.; McAndrew, J.; Sellak, H.; White, C. R.; Jo, H.; Freeman, B. A.; Darley-Usmar, V. M. Biological aspects of reactive nitrogen species. Biochim. Biophys. Acta 1411(2):385–400; 1999.PubMedGoogle Scholar
  87. Patel, S.; Caplan, J.; Dinesh-Kumar, S. P. Autophagy in the control of programmed cell death. Curr. Opin. Plant Biol. 9(4):391–396; 2006.PubMedGoogle Scholar
  88. Pattingre, S.; Tassa, A.; Qu, X.; Garuti, R.; Liang, X. H.; Mizushima, N.; Packer, M.; Schneider, M. D.; Levine, B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939; 2005.PubMedGoogle Scholar
  89. Pena, L.; Cervera, M.; Juarez, J.; Navarro, A.; Pina, J. A.; Duran-Vila, N.; Navarro, L. Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep. 14:616–619; 1995b.Google Scholar
  90. Pena, L.; Cervera, M.; Juarez, J.; Navarro, A.; Pina, J. A.; Navarro, L.; Rep, P. C. Genetic transformation of lime (Citrus aurantifolia Swing.): factors affecting transformation and regeneration. Plant Cell Rep. 16:731–737; 1997.Google Scholar
  91. Pena, L.; Cervera, M.; Juarez, J.; Ortega, C.; Pina, J. A.; Duran-Vila, N.; Navarro, L. High-efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Sci. 104:183–191; 1995a.Google Scholar
  92. Perl, A.; Lotan, O.; Abu-Abied, M.; Holland, D. Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): the role of antioxidants during grape-Agrobacterium interactions. Nat. Biotechnol. 14(5):624–628; 1996.PubMedGoogle Scholar
  93. Poleschuk, S. V.; Gorbatenko, I. Y. Effect of the synthetic antioxidant phenoxane on the regeneration and ontogeny of the tomato in vitro. Russ. Agric. Sci. 5(5):15–17; 1995.Google Scholar
  94. Pu, X. A.; Goodman, R. N. Induction of necrosis by Agrobacterium tumefaciens on grape explants. Physiol. Mol. Plant Pathol. 41:245–254; 1992.Google Scholar
  95. Qiu, W., P.; Fekete, S.; Todd, T.; Kovács, L. Facilitation of microshoot tip propagation of Vitis aestivalis var. Norton by combined application of an antioxidant and cytokinins. Am. J. Enol. Vitic. 55(1):112–114; 2004.Google Scholar
  96. Ramanathan, L.; Das, N. P. Natural products inhibit oxidative rancidity in salted cooked ground fish. J. Food Sci. 58:318–320; 1993.Google Scholar
  97. Ren, D.; Yang, H.; Zhang, S. Cell death mediated byMAPK is associated with hydrogen peroxide production in Arabidopsis. J. Biol. Chem. 277:559–565; 2002.PubMedGoogle Scholar
  98. Rhee, S. G. Redox signaling: hydrogen peroxide as intracellular messenger. Exp. Mol. Med. 31:53–59; 1999.PubMedGoogle Scholar
  99. Samuel, M. A.; Ellis, B. E. Double jeopardy: both overexpression and suppression of a redox-activated plant-mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell 14:2059–2069; 2002.PubMedGoogle Scholar
  100. Samuel, M.A.; Hall, H.; Krzymowska, M.; Drzewiecka, K.; Hennig, J.; Ellis, B.E. SIPK signaling controls multiple components of harpin-induced cell death in tobacco. Plant J 42: 406–416; 2005.PubMedGoogle Scholar
  101. Shaw, C. H.; Loake, G. J.; Brown, A. P.; Garrett, C. S. The early events in Agrobacterium infection. In: Smith, C. J. ed., Biochemistry and molecular biology of plant-pathogen interactions. Oxford: Clarendon Press; 1991:197–209.Google Scholar
  102. Somssich, I. E.; Hahlbrock, K. Pathogen defense in plants—a paradigm of biological complexity. Trends Plant Sci. 3:86–90; 1998.Google Scholar
  103. Soobratteea, M. A.; Neergheena, V. S.; Luximon-Rammaa, A.; Aruomab, O. I.; Bahoruna, T. Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat. Res. 579:200–213; 2005.Google Scholar
  104. Soosaar, J.L.; Burch-Smith, T. M.; Dinesh-Kumar, S.P. Mechanisms of plant resistance to viruses. Nat. Rev. Microbiol. 3:789–798; 2005.PubMedGoogle Scholar
  105. Stipic, M.; Rotino, G. L.; Piro, F. Regeneration and genetic transformation attempts in the cauliflower ‘Tardivo di Fano’. Italus Hortus 7(2):20–26; 2000.Google Scholar
  106. Sundaresan, M.; Yu, Z. X.; Ferrans, V. J.; Irani, K.; Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299; 1995.PubMedGoogle Scholar
  107. Takayama, S.; Takai, A. Effect of antioxidant compound BHA on growth of potato shoots cultured in vitro. Journal of Society of High Technology in Agriculture 16(1):11–15; 2004.Google Scholar
  108. Tian, M.; Gu, Q.; Zhu, M. Y. The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus. Plant Sci. 165(4):701–707; 2003.Google Scholar
  109. Tian, M.; Han, N.; Bian, H. W.; Zhu, M. Y. The possible relationship between the regeneration capacity and reactive oxygen species in the strawberry calli. Acta Horticulturae Sinica 31(3):372–374; 2004.Google Scholar
  110. Toldi, O.; Tóth, S.; Pónyi, T.; Scott, P. An effective and reproducible transformation protocol for the model resurrection plant Craterostigma plantagineum Hochst. Plant Cell Rep. 21(1):63–69; 2002.Google Scholar
  111. Torres, M. A.; Dangl, J. L. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 8:397–403; 2005.PubMedGoogle Scholar
  112. Tóth, S.; Scott, P.; Sorvari, S.; Toldi, O. Effective and reproducible protocols for in vitro culturing and plant regeneration of the physiological model plant Ramonda myconi (L.) Rchb. Plant Sci. 166(4):1027–1034; 2004.Google Scholar
  113. von Sonntag, C. The chemical basis of radiation biology. London: Taylor and Francis; 1987.Google Scholar
  114. Wagner, D.; Przybyla, D.; op den Camp, R.; Kim, C.; Landgraf, F.; Lee, K. P.; Wursch, M.; Laloi, C.; Nater, M.; Hideg, E. et al. The genetic basis of singlet oxygen induced stress responses of Arabidopsis thaliana. Science 306:1183–1185; 2004.PubMedGoogle Scholar
  115. Wang, Z. M.; Hu, L. B.; Yi, G. H.; Xu, H.; Qi, Y. P.; Yao, L. N. ORF390 of white spot syndrome virus genome is identified as a novel anti-apoptosis gene. Biochem. Biophys. Res. Commun. 325 (3):899–907; 2004.PubMedGoogle Scholar
  116. Wojtaszek, P. Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322:681–691; 1997.PubMedGoogle Scholar
  117. Wu, G.; Shortt, B. J.; Lawrence, E. B.; Levine, E. B.; Fitzsimons, K. C.; Shah, D. M. Disease resistance conferred by expression of gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7:1357–1368; 1995.PubMedGoogle Scholar
  118. Wu, H. C.; Toit, E. S. D. Reducing oxidative browning during in vitro establishment of Protea cynaroides. Scientia Horticulturae 100(1/4):355–358; 2004.Google Scholar
  119. Xu, P.; Rogers, S. J.; Roossinck, M. J. Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress. Proc. Natl. Acad. Sci. U S A 101:15805–15810; 2004.PubMedGoogle Scholar
  120. Yan, G. Q.; Tian, L. H.; Yang, L. Y. Studies on the browning in callus induction of Elaeagnus mollis. Acta Botanica Boreali-Occidentalia Sinica 24(8):1384–1389; 2004.Google Scholar
  121. Yu, L.; Alva, A.; Su, H.; Dutt, P.; Freundt, E.; Welsh, S.; Baehrecke, E. H.; Lenardo, M. J. Regulation of an ATG7–beclin 1 program of autophagic cell death by caspase-8. Science 304:1500–1502; 2004.PubMedGoogle Scholar
  122. Zeng, P.; Vadnais, D. A.; Zhang, Z.; Polacco, J. C. Refined glufosinate selection in Agrobacterium-mediated transformation of soybean Glycine max (L.) Merrill. Plant Cell Rep. 22(7):478–482; 2004.PubMedGoogle Scholar
  123. Zheng, D.; Zhang, H.; Carle, S.; Hao, G.; Holden, M. R.; Burr, T. J. A luxR homolog, aviR, in Agrobacterium vitis is associated with induction of necrosis on grape and a hypersensitive response on tobacco. Mol. Plant Microbe Interact. 16:650–658; 2003.PubMedGoogle Scholar
  124. Zheng, Q. S., Ju B., Liang L. K., Xiao X. H. Effects of antioxidants on the plant regeneration and GUS expressive frequency of peanut (Arachis hypogaea) explants by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 811: 83–89; 2005.Google Scholar
  125. Ziv, M.; Halevy, A. H. Control of oxidative browning and in vitro propagation of Strelitzia reginae. HortScience 18(4):434–436; 1983.Google Scholar

Copyright information

© The Society for In Vitro Biology 2008

Authors and Affiliations

  1. 1.Institute for Sustainable and Renewable ResourcesInstitute for Advanced Learning and ResearchDanvilleUSA
  2. 2.Department of Horticulture and ForestryVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations