In Vitro Cellular & Developmental Biology - Plant

, Volume 43, Issue 6, pp 550–557 | Cite as

Efficient Agrobacterium-mediated transformation of Vigna mungo using immature cotyledonary-node explants and phosphinothricin as the selection agent

  • M. MurugananthamEmail author
  • S. Amutha
  • N. Selvaraj
  • G. Vengadesan
  • A. Ganapathi


Herbicide (Basta®)-tolerant Vigna mungo L. Hepper plants were produced using cotyledonary-node and shoot-tip explants from seedlings germinated in vitro from immature seeds. In vitro selection was performed with phosphinothricin as the selection agent. Explants were inoculated with Agrobacterium tumefaciens strain LBA4404 (harboring the binary vector pME 524 carrying the nptII, bar, and uidA genes) in the presence of acetosyringone. Shoot regeneration occurred for 6 wk on regeneration medium (MS medium with 4.44 μM benzyl adenine, 0.91 μM thidiazuron, and 81.43 μM adenine sulfate) with 2.4 mg/l PPT, explants being transferred to fresh medium every 14 d. After a period on elongation medium (MS medium with 2.89 μM gibberellic acid and 2.4 mg/l PPT), β-glucuronidase-expressing putative transformants were rooted in MS medium with 7.36 μM indolyl butyric acid and 2.4 mg/l PPT. β-Glucuronidase expression was observed in the primary transformants (T0) and in the seedlings of the T1 generation. Screening 128 GUS-expressing, cotyledonary-node-derived, acclimatized plants by spraying the herbicide Basta® at 0.1 mg/l eliminated nonherbicide-resistant plants. Southern hybridization analysis confirmed the transgenic nature of the herbicide-resistant plants. All the transformed plants were fertile, and the transgene was inherited by Mendelian genetics. Immature cotyledonary-node explants produced a higher frequency of transformed plants (7.6%) than shoot-tip explants (2.6%).


Agrobacterium tumefaciens Acetosyringone Black gram Immature cotyledonary nodes Phosphinothricin Vigna mungo 



The authors thank the Department of Biotechnology (DBT), Government of India for the financial support (Grant no. BT/AGR/PR1446/07/68/99). The senior author is grateful to Prof. D. Girija and Mrs. Beena, Center for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Trissur, Kerala, for providing assistance and the opportunity to perform the radioactive labeling and Southern hybridization. The authors are grateful to Dr. Victor Gaba, Department of Plant Pathology, ARO Volcani Center, Bet Dagan, Israel for the critical comments on the manuscript.


  1. Bean, S. J., Gooding, P. S., Mullineaux, P. M., Davies, D. R. A simple system for pea transformation. Plant Cell Rep.16:513–519L.1997.Google Scholar
  2. Chandra, M., Pal, A. Differential response of the two cotyledons of Vigna radiata in vitro. Plant Cell Rep.15:248–253.1995.CrossRefGoogle Scholar
  3. Chandra, A., Pental, D. Regeneration and genetic transformation of grain legumes: an overview. Curr Sci.84(3):381–387.2003.Google Scholar
  4. Chilton, M. D., Currier, T. C., Farrand, S. K., Bendich, A. J., Gordon, M. P., Nester, E. W. Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci USA.71:3672–3676.1974.PubMedCrossRefGoogle Scholar
  5. Das, D. K., Siva Prakash, N., Bhalla-Sarin, N. An efficient regeneration system of black gram (Vigna mungo L.) through organogenesis. Plant Sci.134:199–206.1998.CrossRefGoogle Scholar
  6. Davies, D., Hamilton, R. J., Mullineaux, P. M. Transformation of peas. Plant Cell Rep.12:180–183.1993.CrossRefGoogle Scholar
  7. Di, R., Purcell, V., Collins, G. B., Ghabrial, S. A. Production of transgenic soybean lines expressing the bean pod mottle mosaic virus coat protein precursor gene. Plant Cell Rep.15:746–750.1996.CrossRefGoogle Scholar
  8. Gamborg, O. L., Miller, R. A., Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res.50:151–158.1968.PubMedCrossRefGoogle Scholar
  9. Garcia, J. A., Hille, J., Vos, P., Goldbach, R. Transformation of cowpea Vigna unguiculata with a full-length DNA copy of cowpea mosaic virus mRNA. Plant Sci.48:89–98.1987.CrossRefGoogle Scholar
  10. Gill, R., Eapen, S., Rao, P. S. Morphogenic studies of cultured cotyledons of urd bean (Vigna mungo L. Hepper). J Plant Physiol.139:1–5.1987.Google Scholar
  11. Goel, S., Mudgal, A. K., Gupta, S. C. Development of plants from in vitro cultured shoot-tips of Vigna mungo and Vigna radiate. Trop Plant Sci Res.1:31–33.1983.Google Scholar
  12. Grant, J. E., Cooper, P. A., McAra, A. E., Frew, T. J. Transformation of peas (Pisum sativum L.) using immature cotyledons. Plant Cell Rep.15:254–258.1995.CrossRefGoogle Scholar
  13. Gulati, A., Jaiwal, P. K. Culture conditions effecting plant regeneration from cotyledon of mungbean [Vigna radiata (L.) Wilczek]. Plant Cell Rep.13:523–527.1990.Google Scholar
  14. Ignacimuthu, S. Agrobacterium-mediated transformation of Vigna sesquipedalis koern (asparagus bean). Indian J Exp Biol.38:493–498.2000.PubMedGoogle Scholar
  15. Ignacimuthu, S., Franklin, G., Melchias, G. Multiple shoot formation and in vitro fruiting of Vigna mungo L. Hepper. Curr Sci.73:733–735,1997.Google Scholar
  16. Jaiwal, P. K., Kumari, R., Ignacimuthu, S., Potrykus, I., Sautter, C. Agrobacterium tumefaciens-mediated genetic transformation of mungbean [Vigna radiata (L.) Wilczek]—a recalcitrant grain legume. Plant Sci.161:239–247.2001.PubMedCrossRefGoogle Scholar
  17. Jefferson, R. A., Kavanagh, T. A., Bevan, N. W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J.6:3901–3907.1987.PubMedGoogle Scholar
  18. Jordan, M. C., Hobbs, S. L. A. Evaluation of a cotyledonary node regeneration system for Agrobacterium-mediated transformation of pea (Pisum sativum L.). In vitro Cell Dev Biol Plant.29:77–88.1993.CrossRefGoogle Scholar
  19. Liu, H. K., Yang, C., Wei, Z. M. Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system. Planta.1042–1049.2004.Google Scholar
  20. Mathews, H. Morphogenetic responses from in vitro cultured seedling explants of mungbean [Vigna radiata (L.) Wilczek]. Plant Cell Tissue Organ Cult.11:233–240.1987.CrossRefGoogle Scholar
  21. Meurer, C. A., Dinkins, R. D., Collins G. B. Factors affecting soybean cotyledonary node transformation. Plant Cell Rep.18:180–186.1998.CrossRefGoogle Scholar
  22. Murashige, T., Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant.15:473–497.1962.CrossRefGoogle Scholar
  23. Muruganantham, M., Ganapathi, A., Amutha, S., Vengadesan, G., Selvaraj, N. Shoot regeneration from immature cotyledonary nodes in black gram (Vigna mungo (L.) Hepper). Indian J. Biotechnol.4:551–555.2005.Google Scholar
  24. Muthukumar, B., Mariamma, M., Veluthambi, K., Gnanam, A. Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata L. Walp) using Agrobacterium tumefaciens. Plant Cell Rep.15:980–985.1996.CrossRefGoogle Scholar
  25. Olhoft, P. M., Somers, D. A. l-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep.20:706–711.2001.CrossRefGoogle Scholar
  26. Paz, M. M., Shou, H., Guo, Z., Zhang, Z., Banerjee, A. K., Wang, K. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica.136:167–179.2004.CrossRefGoogle Scholar
  27. Pigeaire, A., Abernethy, D., Smith, P. M., Simpson, K., Fletcher, N., Lu, C. Y., Atkins, C. A., Cornish, E. Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices. Mol Breed.3:341–349.1997.CrossRefGoogle Scholar
  28. Rogers, S. O., Bendich, A. J. Extraction of DNA from plant tissues. In: Gelvin S. B., Schilperoot, R. A., eds. Plant molecular biology manual. Dordrecht: Kluwer.1–11.1988.Google Scholar
  29. Sahoo, L., Sugla, T., Jaiwal, P. K. In vitro regeneration and genetic transformation of Vigna species. In: Jaiwal P. K., Singh R. P., eds. Biotechnology for the improvement of legumes. Netherlands: Kluwer.1–40.2002.Google Scholar
  30. Saini, R., Jaiwal, P. K. Transformation of a recalcitrant grain legume, Vigna mungo L. Hepper, using Agrobacterium tumefaciens-mediated gene transfer to shoot apical meristem cultures. Plant Cell Rep.24:164–171.2005.PubMedCrossRefGoogle Scholar
  31. Saini, R., Jaiwal, S., Jaiwal, P. K. Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens. Plant Cell Rep.21:851–859.2003.PubMedGoogle Scholar
  32. Sambrook, J., Fritsch, E. F., Maniatis, T. Molecular cloning: a laboratory manual, 2nd ed. New York: Cold Spring Harbor Laboratory Press.1989.Google Scholar
  33. SAS (Statistical Analysis Systems). A guide to statistical and data analysis using JMP® and JMP IN® software. Cary, NC: SAS Institute.1996.Google Scholar
  34. Schroeder, H. E., Schotz, A. H., Wardley-Richadson, T., Spencer, D., Higgins, T. Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol.101:751–757.1993.PubMedCrossRefGoogle Scholar
  35. Sokal, P.R., Rholf, F.C. Biometry. San Francisco: Freeman.776.1981Google Scholar
  36. Somers, D. A., Samac, D. A., Olhoft, P. M. Recent advances in legume transformation. Plant Physiol.131:892–899.2003.PubMedCrossRefGoogle Scholar
  37. Tewari-Singh, N., Sen, J., Kiesecker, H. Use of a herbicide or lysine plus threonine for non-antibiotic selection of transgenic chickpea. Plant Cell Rep.22:576–583.2004.PubMedCrossRefGoogle Scholar
  38. Tivarekar, S., Eapen, S. High frequency plant regeneration from immature cotyledons of mungbean. Plant Cell Tissue Organ Cult.66:227–230.2001.CrossRefGoogle Scholar
  39. Van Larebeke, N., Genetello, C. H., Hernalsteens, J. P., De Picker, A., Zaenen, I., Messens, E., Van Montagu, M., Schell, J. Transfer of Ti plasmids between Agrobacterium strains by mobilization with conjugative plasmid. Mol Gen Genet.152:119–124.1977.CrossRefGoogle Scholar
  40. Zhang, Z., Xing, A., Staswick, P., Clemente, T. The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tissue Organ Cult.56:37–46.1999.CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2007

Authors and Affiliations

  • M. Muruganantham
    • 1
    • 4
    Email author
  • S. Amutha
    • 1
  • N. Selvaraj
    • 1
    • 2
  • G. Vengadesan
    • 1
    • 3
  • A. Ganapathi
    • 1
  1. 1.Department of Biotechnology, School of Life SciencesBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of BotanyE.V.R.CollegeTiruchirappalliIndia
  3. 3.Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteUSA
  4. 4.Institute for Plant Protection, Department of Plant Pathology and Weed ScienceARO Volcani CenterBet DaganIsrael

Personalised recommendations