Advertisement

Medicinal biotechnology in the genus scutellaria

  • Ian B. Cole
  • Praveen K. Saxena
  • Susan J. Murch
Invited Review

Abstract

Plant-based medicines have an important role in the lives of millions of people. The ancient knowledge of the use of plants as medicines has led to the discovery of many important western pharmaceuticals, and the popularity of whole plant preparations for a range of therapeutic applications is growing rapidly. However, there are many challenges in the production of plant-based medicines, many of which put both the consumer and the plant populations at risk. Modern biotechnology can be optimized to mass-produce plants of specific chemical composition for use as particular treatments and applications. In this review, we have used one of the most important medicinal plant genera, Scutellaria, as a model to assess the potential of applications of biotechnology for the improvement of medicinal plants.

Keywords

Indoleamines Flavonoids Baicalin Melatonin Bioreactors Plant secondary metabolism 

References

  1. Alan A, Zeng H, Assani A, Shi WL, McRae HE, Murch SJ, Saxena PK (2007) Assessment of genetic stability of the germplasm lines of medicinal plant Scutellaria baicalensis Georgi. (Huang-qin) in long-term, in vitro maintained cultures. Plant Cell Rep Online DOI  10.1007/s00299-007-0332-9
  2. Aonuma S, Miura T, Tarutani M (1957) Effects of Coptis, Scutellaria, Rhubarb and Bupleurum on the serum cholesterol and phospholipid. Yakugaku Zasshi 77: 1303–1306Google Scholar
  3. Bernath J (1986) Production ecology of secondary plant products. Herbs, spices and medicinal plants 1: 185–234Google Scholar
  4. Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends in Biotechnology 23:4 180–185PubMedCrossRefGoogle Scholar
  5. Cao J, Murch SJ, O’Brien R, Saxena PK (2006) Rapid method for accurate analysis of melatonin, serotonin and auxin in plant samples using liquid chromatography-tandem mass spectrometry. J Chroma A 1134: 333–337Google Scholar
  6. Catling PM, Porebski S (1998) Rare wild plants of potential or current economic importance in Canada—a list of priorities. Can J Plant Sci 78:4 653–658Google Scholar
  7. Chang WH, Chem CH, Lu FJ (2002) Different effects of baicalein, baicalin and wogonin on mitochondrial function, glutathione content and cell cycle progression in human hepatoma cell lines. Planta Medica 68: 128–132PubMedCrossRefGoogle Scholar
  8. Chen GF, Huo YS, Tan DX, Liang Z, Zhang W, Zhang Y (2003) Melatonin in Chinese medicinal herbs. Life Sci 73: 19–26PubMedCrossRefGoogle Scholar
  9. de Boer JG, Quiney B, Walter PB, Thomas C, Hodgson K, Murch SJ, Saxena PK (2005) Protection against aflatoxin-B1-induced liver mutagenesis by Scutellaria baicalensis. Mut Res 578: 15–22.Google Scholar
  10. Dewick PM (2002) Medicinal natural products: a biosynthetic approach, 2nd edition. New York: WileyGoogle Scholar
  11. Edwards R (2004) No remedy in sight for herbal ransack. New Sci 181: 10–11Google Scholar
  12. Farnsworth NR (1998) Screening plant for new medicines. In: Wilson, E.O. (ed.) Biodiversity. Washington, DC: National Academy Press 83–97Google Scholar
  13. Gafner SC, Bergeron LL, Batcha J, Reich J, Arnason JT, Burdette JE, Pezzuto JM, Angerhofer CK (2003) Inhibition of [3H]-LSD binding to 5-HT7 receptors by flavonoids from Scutellaria lateriflora. J Nat Prod 66: 535–537PubMedCrossRefGoogle Scholar
  14. Gao D, Sakurai K, Katoh M, Chen J, Ogiso T (1996) Inhibition of microsomal lipid peroxidation by baicalein: A possible formation of an iron-baicalein complex. Biochem Mol Biol Int 39: 215–225Google Scholar
  15. Gao SJ, Chen BJ, Zhu DN (2002) In vitro production and identification of autotetraploids of Scutellaria baicalensis. Plant Cell Tiss Org 70:3 289–293CrossRefGoogle Scholar
  16. Goh D, Lee YH, Ong ES (2005) Inhibitory effects of a chemically standardized extract from Scutellaria barbata in human colon cancer cell lines, LoVo. J Food Ag Chem 53: 8197–8204CrossRefGoogle Scholar
  17. Greenwald A (1998) Herbal Healing. Time Magazine November 23, 48–58Google Scholar
  18. Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R (2002) Plant metabolomics: the missing link in functional genomics strategies. Plant Cell Rep 14: 1437–1440CrossRefGoogle Scholar
  19. Hattori S (1930) Spectrography of the flavone series. III. The constitution of wogonin. Acta Phytochim 5: 99–116Google Scholar
  20. Hirai Y, Takase H, Kobayashi H, Yamamoto M, Fujioka N, Kohda H, Yamasaki K, Yasuhara T, Nakajima T (1983) Screening test for anti-inflammatory crude drugs bases on inhibition effect of histamine release from mast cells. Shoyakugaku Zasshi 37: 347–380Google Scholar
  21. Hirotani M, Kuroda R, Suzuki H, Yoshikawa T (2000) Cloning and expression of UDP-glucose: flavonoid 7-0-glucosytransferase from hairy root culturesof Scutellaria baicalensis. Planta 210:6 1006–1013PubMedGoogle Scholar
  22. Hong H, Liu GQ (2004) Protection against hydrogen peroxide-induced cytotoxicity in PC12 cells by scutellarin. Life Sci 74: 2959–2973PubMedCrossRefGoogle Scholar
  23. Horvath CR, Martos PA, Saxena PK (2005) Identification and quantification of eight flavones in root and shoot tissues of the medicinal plant Huang-qin (Scutellaria baicalensis Georgi.) using high-performance liquid chromatography with diode array and mass spectrometric detection. J Chromatogr A 1062: 199–207PubMedCrossRefGoogle Scholar
  24. Hsieh TC, Lu X, Chea J, Wu JM (2002) Prevention and management of prostate cancer using PC-SPES: a scientific perspective. J Nutr 132: S3153–S3517Google Scholar
  25. Hwang SJ (2006) Baicalin production in transformed hairy root clones of Scutellaria baicalensis. Biotechnol Bioproc E 11:2 105–109CrossRefGoogle Scholar
  26. Joshee N, Mentreddy SR, Yadav AK (2007) Mycorrhizal fungi and growth and development of microproagated Scutellaria integrifolia plants. Ind Crops Prod 25: 169–177Google Scholar
  27. Kimura Y, Kubo M, Tani T, Arichi S, Ohiminami H, Okuda H (1981a) Studies on Scutellariae Radix III. Effect on lipid metabolism in serum, liver, and fat cell of rat. Chem Pharm Bull 29: 2308–2312Google Scholar
  28. Kimura Y, Kubo M, Tani T, Arichi S, Okuda H (1981b) Studies on Scutellariae Radix IV. Effects on lipid peroxidation in rat liver. Chem Pharm Bull 29: 2610–2617Google Scholar
  29. Kimura Y, Okuda H, Tani H, Arichi S (1982) Studies on Scutellaria Radix V. Effects of flavone compounds on lipid peroxidation in rat liver. Chem Pharm Bull 30: 1792–1795PubMedGoogle Scholar
  30. Kimura Y, Okuda H, Arichi S (1985) Studies on Scutellaria Radix. Effects of various flavonoids on arachidonate metabolism in leukocytes. Planta 47: 132–136Google Scholar
  31. Koda A, Nagai H, Wada H (1970a) The pharmacological action of baicalin and baicalein (I). Effects of active and anaphylactic reactions. Folia Pharmacol Jpn 66: 194–213Google Scholar
  32. Koda A, Nagai H, Wada H (1970b) The pharmacological action of baicalin and baicalein (II). Effects of active and anaphylactic reactions. Folia Pharmacol Jpn 66: 237–247Google Scholar
  33. Koda A, Nagai H, Yoshida Y, Ron Hon C (1970c) The pharmacological action of baicalin and baicalein (III). Effect upon experimental asthma. Folia Pharmacol Jpn 66: 471–486Google Scholar
  34. Koda A, Nishi K, Nagai H, Matsuura N, Tsutiya H (1970d) Anti-allergic actions of crude drugs. Folia Pharmacol Jpn 66: 366–378Google Scholar
  35. Koda A (1973) Pharmacological action of Scutellariae radix, principally baicalin and baicalein. Metabol Dis (J Wakanyaku) 10: 268–277Google Scholar
  36. Koda A, Nishi K, Nagai H, Matsuura N, Tsutiya H (1982) Anti-allergic actions of crude drugs and blended Chinese traditional medicines. Effects on Type I and Type IV. Folia Pharmacol Jpn 80: 31–41Google Scholar
  37. Koda A (1987) The relationship between crude drugs and allergic reaction. In: 34 Annual Meeting of Japanese Society for Pharmacogniscy, Osaka, October pp.9–12Google Scholar
  38. Kovacs D, Kuzokina IN, Szoke E, Kursinzki L (2004) HPLC determination of flavonoids in hairy-root cultures of Scutellaria baicalensis Georgi. Chromotographia 60: Suppl. Pp. S81–S85Google Scholar
  39. Kubo M, Kimura Y, Odani T, Tani T, Namba T (1981) Studies on Scutellariae radix. Planta 43: 194–201CrossRefGoogle Scholar
  40. Kubo M, Matsuda H, Tanaka M, Kimura Y, Okuda H, Higashino M, Tani T, Namba K, Arichi S (1984) Studies on Scutellariae radix VII. Anti-arthritic and anti-inflammatory action of methanolic extract and flavonoid components from Scutellariae radix. Chem Pharm Bull 32: 2724–2729PubMedGoogle Scholar
  41. Kubo M, Matsuda H, Tani T, Arichi S, Kimura Y (1985) Studies in Scutellariae radix XII. Anti-thrombic action of various flavonoids from Scutellariae Radix. Chem Pharm Bull 33: 2411–2415PubMedGoogle Scholar
  42. Kumazaki H (1958) On the pharmacological action of the Scutellaria, a crude drug. Gifu Pharm Univ Bull 6: 94–111, 153–163, 164–168, 352–359, 372–376Google Scholar
  43. Kuzovkina IN, Goseva AV, Alterman IE, Karnachuk RA (2001) Flavonoid production in transformed Scutellaria baicalensis roots and ways of its regulation. Russ J Plant Physiol 48:4 448–452CrossRefGoogle Scholar
  44. Kuzovkina IN, Guseva AV, Kovacs D, Szoke E, Vdovitchenko I (2005) Flavones in genetically transformed Scutellaria baicalensis roots and induction of their synthesis by elicitation with methyl jasmonate. Russ J Plant Physiol 52:1 77–82CrossRefGoogle Scholar
  45. Lambert J, Srivastava J, Vietmeyer N (1997) Medicinal plants: rescuing a global heritage. World Bank Technical Paper No. 355. The World Bank, Washington, D.C.Google Scholar
  46. Lauglin JC, Munro D (1982) The effect of fungal colonization on the morphine production of poppy Papaver somniferum L. capsules. Journal of Agricultural Sciences 98: 679–686CrossRefGoogle Scholar
  47. Leaman D (2001) Conservation, trade, sustainability and exploration of medicinal plant species. Pages 1–15 in Development of Plant–Based Medicines: Conservation, Efficacy and Safety. Editor: P.K. Saxena. Kluwer Academic PublishersGoogle Scholar
  48. Lee H, Kim YO, Kim H, Kim SY, Noh HS, Kang SS, Cho GJ Choi WS, Suk K (2003) Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB 17:11Google Scholar
  49. Li BQ, Fu T, Yan YD, Baylor NW, Ruscetti FW, Kung H (1993) Inhibition of HIV infection by baicalin—a flavonoid compound purified from Chinese herbal medicine. Cell Mol Biol Res 339: 119–124Google Scholar
  50. Li H, Murch SJ, Saxena PK (2000) Thidiazuron-induced de novo shoot organogenesis on seedlings, etiolated hypocotyls, and stem segments of Huang-qin. Plant Cell Tiss Org 62: 169–173CrossRefGoogle Scholar
  51. Li FQ, Wang T, Pei Z, Liu B, Hong JS (2004) Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons. J Neural Trans 112: 331–347CrossRefGoogle Scholar
  52. Lim BO (2003) Effects of wogonin, wogonoside, and 3,5,7,2′,6′-pentahydroxyflavone on chemical mediator production in peritoneal exudate cells and immunoglobulin E of rat mesenteric lymph node lymphocytes. J Ethnopharm 84: 23–29CrossRefGoogle Scholar
  53. Liu CZ, Murch SJ, Jain JC, Saxena PK (2004) Goldenseal (Hydrastis canadaensis L.): In vitro regeneration for germplasm conservation and elimination of heavy metal contamination. In Vitro Cell Div Biol-Plant 40: 75–79Google Scholar
  54. Liu H, Yang X, Tang R, Liu J, Xu H (2005) Effect of scutellarin on nitric oxide production in early stages of neuron damage induced by hydrogen peroxide. Pharm Res 51: 205–210CrossRefGoogle Scholar
  55. Malikov VM, Yuledashev MP (2002) Phenolic compounds of plants of the Scutellaria L. genus: distribution, structure, and properties. Chem Nat Comp 38:4 358–406CrossRefGoogle Scholar
  56. Matsuzaki Y, Kurokawa N, Terai S, Matsumura Y, Kobayashi N, Okita K (1996) Cell death induced by baicalein in human hepatocellular carcinoma cell lines. Jpn J Cancer Res 87:2 170–177PubMedGoogle Scholar
  57. Morimoto S, Harioka T, Shoyama Y (1995) Purification and characterization of flavone-specific β-glucuronidase from callus cultures of Scutellaria baicalensis Georgi. Planta 195: 535–540Google Scholar
  58. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15: 473–492CrossRefGoogle Scholar
  59. Murch SJ, Simmons CB, Saxena PK (1997) Melatonin in feverfew and other medical plants. Lancet 350: 1598–1599PubMedCrossRefGoogle Scholar
  60. Murch SJ, Krishnaraj S, Saxena PK (2000) Phytopharmaceuticals: mass-production, standardization, and conservation. Sci Rev Alt Med 4: 33–37Google Scholar
  61. Murch SJ, Rupasinghe HPV, Goodenowe D, Saxena PK (2004) A metobolomic analysis of medicinal diversity in Huang-qin (Scutellaria baicalensis Georgi.) genotypes discovery of novel compounds. Plant Cell Rep 23: 419–425PubMedCrossRefGoogle Scholar
  62. Murch SJ, Saxena PK (2006) St John’s wort (Hypericum perforatum L.): Challenges and strategies for production of chemically consistent plants Can J Plant Sci 86: 765–771Google Scholar
  63. Nan JX, Park EJ, Kim YC, Ko G, Sohn DH (2002) Scutellaria baicalensis inhibits liver fibrosis induced by bile duct litigation or carbon tetrachloride in rats. J Pharm Pharmacol 54: 555–563PubMedCrossRefGoogle Scholar
  64. Newman DJ, Cragg GM, Snader KM (2003) Natural products of new drugs over the period 1981–2002. J Nat Prod 66: 1022–1037PubMedCrossRefGoogle Scholar
  65. Nishikawa K, Ishimaru K (1997) Flavonoids in root cultures of Scutellaria baicalensis. J Plant Physiol 151:5 633–636Google Scholar
  66. Nishikawa K, Furukawa H, Fujioka T, Fujii H, Mihashi K, Shimomura K, Ishimaru K (1999) Flavone production in transformed root cultures of Scutellaria baicalensis Georgi. Phytochem 52:5 885–890CrossRefGoogle Scholar
  67. Pouzet B (2002) SB-258741: a 5-HT7 receptor antagonist of potential clinical interest. CNS Drug Rev 8: 90–100PubMedCrossRefGoogle Scholar
  68. Schippmann U (2001) Medicinal plants significant trade study. CITES Project S-109 Plants committee document PC9 9.1.3Google Scholar
  69. Seigler DS (1996) Chemistry and mechanisms of allelopathic interactions. Agron J 88: 876–885CrossRefGoogle Scholar
  70. Sekiya K, Okuda H (1982) Selective-inhibition of platelet lipoxygenase by baicalein. Biochem Biophys Res Com 105:3 1090–1095PubMedCrossRefGoogle Scholar
  71. Seo WT, Park YH, Choe TB (1993) Identification and production of flavonoids in a cell-suspension culture of Scutellaria baicalensis Georgi. Plant Cell Rep 12:7–8 414–417Google Scholar
  72. Seo WT, Park YH, Choe TB (1996) An optimized of flavonoid production from the suspension culture of Scutellaria baicalensis Georgi. Cells. J Microbiol Biotechnol 6:5 347–351Google Scholar
  73. Slifman NR, Obermeyer WR, Musser SM, Correll WA, Cichowicz SM, Betz JM, Love LA (1998) Contamination of botanical dietary supplements with Digitalis lantana. N Engl J Med 339: 806–811PubMedCrossRefGoogle Scholar
  74. Srivastava J, Lambert J, Vietmeyer N (1996) Medicinal plants: an expanding role in development. World Bank Technical Paper 320 The World Bank, Washington D.C.Google Scholar
  75. Stojakowska A, Malarz J, Kohlmunzer S (1999) Micropropagation of Scutellaria baicalensis Georgi. Acta Soc Bot Pol 68:2 103–107Google Scholar
  76. Stojakowska A, Kisiel W (1998) Secondary metabolites from a callus culture of Scutellaria colomnae. Fitoterapia 70:3 324–325CrossRefGoogle Scholar
  77. Tai MC, Tsang SY, Chang LYF, Xue H (2005) Therapeutic potential of Wogonin: A naturally occurring flavonoid. CNS Drug Rev 11:2 141–150PubMedCrossRefGoogle Scholar
  78. Tomimori T, Miyaichi Y, Kizu H (1982) On the flavonoid constituents of Scutellaria baicalensis Georgi. I. Yakugaku Zasshi 104: 338–341Google Scholar
  79. Tomimori T, Miyaichi Y, Imoto Y, Kizu H, Tanabe Y (1983) Studies on the constituents of Scutellaria species. II. On the flavonoid constituents of the root of Scutellaria baicalensis Georgi. (2) Yakugaku Zasshi 103: 607–611Google Scholar
  80. Tomimori T, Miyaichi Y, Imoto Y, Kizu H, Namba T (1986a) Studies on Nepalese crude drugs. VI. On the flavonoid constituents of the root of Scutellaria discolor Colebr. (2) Chem Pharm Bull 34: 406–408Google Scholar
  81. Tomimori T, Miyaichi Y, Jin H, Toyofuku S, Yamamoto M (1986b) Studies on the constituents of Scutellaria species. VII. Seasonal variations of growth and flavonoid content in the root of Scutellaria baicalensis Georgi. Shoyakugaku Zasshi 40: 381–389Google Scholar
  82. Uhring J (1982) In vitro propagation of Scutellaria costaricana. Hortsci 17:3 533Google Scholar
  83. Vines G (2004) Herbal harvests with a future: towards sustainable sources for medicinal plants. Plantlife International. http://www.plantlife.org.uk.
  84. Watanabe H, Kobayashi T, Meibou T, Sekiguchi Y, Uchida K, Aoki T, Cyong JC (2002) Effects of Kampo herbal medicine on plasma melatonin concentration in patients. Am J Chi Med 30: 65–71PubMedCrossRefGoogle Scholar
  85. Yamahara J, Yamada T, Nakanishi H, Sawada T, Fujimura H (1981) Inhibitory effect of crude drugs on the denaturation of human γ-globurin induced by heat and Cu2+. Shoyakugaku Zasshi 35: 103–107Google Scholar
  86. Yamamoto H, Chatani N, Kitayama Z, Tomimori T (1986a) Flavonoid production in Scutellaria baicalensis callus cultures. Plant Cell Tiss Org 5: 219–222CrossRefGoogle Scholar
  87. Yamamoto H, Chantani N, Watanabe K, Tomimori T (1986b) Effect of carbon sources on the growth and flavonoid formation of Scutellaria baicalensis stem callus culture. Shoyakugaku Zasshi 40: 19–25Google Scholar
  88. Yamamoto H, Chantani N, Watanabe K, Tomimori T (1986c) Effect of culture period on the growth and flavonoid formation of Scutellaria baicalensis stem callus culture. Shoyakugaku Zasshi 40: 26–32Google Scholar
  89. Yamamoto H, Chantani N, Watanabe K, Tomimori T (1986d) Effects of 5% maltose and plant growth regulators on the callus growth and flavonoid formation of some Scutellaria baicalensis stem callus lines. Shoyagaku Zasshi 40: 33–39Google Scholar
  90. Yamamoto H, Watanabe K, Tomimori T (1987) Effects of various growth inhibitors on the callus growth and flavonoid production of Scutellaria baicalensis callus cultures. Shoyagaku Zasshi 41: 97–101Google Scholar
  91. Yamamoto H, Sano T, Tomimori T (1989a) Growth and flavonoid formation of Scutellaria baicalensis callus culture in liquid medium. Shoyakugaku Zasshi 43: 87–92Google Scholar
  92. Yamamoto H, Sano T, Takeuchi S, Tanaka M, Tomimori T (1989b) Flavonoid production by two-stage culture and differentiated roots of Scutellaria baicalensis callus in liquid medium. Shoyagaku Zasshi 43: 188–191Google Scholar
  93. Yamamoto H (1991) Scutellaria baicalensis Georgi.: In vitro culture and the production of flavonoids. In: Bajaj, Y.P.S. (ed.) Medicinal and Aromatic Plants, Springer-Verlag Berlin. 398–418Google Scholar
  94. Zhao Y, Li H, Gao Z, Gong Y, Xu H (2006) Effects of flavonoids extracted from Scutellaria baicalensis Georgi. On hemin-nitrite-H202 induced liver injury. Eur J Pharmacol 536: 192–199PubMedCrossRefGoogle Scholar
  95. Zhou Y, Hirotani M, Yoshikawa T, Furuya T (1997) Flavonoids and phenylethanoids from hairy root cultures of Scutellaria baicalensis. Phytochem 44:1 83–87CrossRefGoogle Scholar
  96. Zobayed SMA, Murch SJ, Rupasinghe HPV, de Boer JG, Glickman BW, Saxena PK (2004) Optimized system for biomass production and evaluation of chemo-preventive properties of Scutellaria baicalensis Georgi. Plant Sci 167: 439–446CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2007

Authors and Affiliations

  • Ian B. Cole
    • 1
  • Praveen K. Saxena
    • 2
  • Susan J. Murch
    • 1
  1. 1.Chemistry, I.K. Barber School of Arts and SciencesUniversity of British Columbia OkanaganKelownaCanada
  2. 2.Department of Plant AgricultureUniversity of GuelphGuelphCanada

Personalised recommendations