In Vitro Cellular & Developmental Biology - Plant

, Volume 37, Issue 6, pp 687–700 | Cite as

Use of ri-mediated transformation for production of transgenic plants

  • Mary C. Christey
Invited Review


Agrobacterium rhizogenes-mediated transformation has been used to obtain transgenic plants in 89 different taxa, representing 79 species from 55 genera and 27 families. A diverse range of dicotyledonous plant families is represented, including one Gymnosperm family. In addition to the Ri plasmid, over half these plants have been transformed with foreign genes, including agronomically useful traits. Plants regenerated from hairy roots often show altered plant morphology such as dwarfing, increased rooting, altered flowering, wrinkled leaves and/or increased branching due to rol gene expression. These altered phenotypic features can have potential applications for plant improvement especially in the horticultural industry where such morphological alterations may be desirable. Use of A. rhizogenes and rol gene transformation has tremendous potential for genetic manipulation of plants and has been of particular benefit for improvement of ornamental and woody plants.

Key words

Agrobacterium rhizogenes Ri phenotype rol genes hairy roots altered phenotype 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akasaka, Y.; Mii, M.; Daimon, H. Morphological alterations and root nodule formation in Agrobacterium rhizogenes-mediated transgenic hairy roots of peanut (Arachis hypogaea L.). Ann. Bot. 81:355–362; 1998.CrossRefGoogle Scholar
  2. Andarwulan, N.; Shetty, K. Phenolic content in differentiated tissue cultures of untransformed and Agrobacterium-transformed roots of anise (Pimpinella anisum L.). J. Agric. Food Chem. 47:1776–1780; 1999.PubMedCrossRefGoogle Scholar
  3. Banerjee, S.; Zehra, M.; Gupta, M. M.; Kumar, S. Agrobacterium rhizogenes-mediated transformation of Artemisia annua—production of transgenic plants. Planta Medica 63:467–469; 1997.PubMedCrossRefGoogle Scholar
  4. Bassil, N. V.; Proebsting, W. M.; Moore, L. W.; Lightfoot, D. A. Propagation of hazelnut stem cuttings using Agrobacterium rhizogenes. HortScience 26:1058–1060; 1991.Google Scholar
  5. Bell, R. L.; Scorza, R.; Srinivasan, C.; Webb, K. Transformation of Beurre Bosc pear with the rolC gene. J. Am. Soc. Hort. Sci. 124:570–574; 1999.Google Scholar
  6. Benavides, M. P.; Radice, S. Root induction in Simmondsia chinensis (Link) Schneid. using Agrobacterium rhizogenes. BioCell 22:109–114; 1998.Google Scholar
  7. Berthomieu, P.; Jouanin, L. Transformation of rapid cycling cabbage (Brassica oleracea var. capitata) with Agrobacterium rhizogenes. Plant Cell Rep. 11:334–338; 1992.CrossRefGoogle Scholar
  8. Boase, M. R.; Winefield, C. S.; Borst, N. K. Expression of the rolC gene of Agrobacterium rhizogenes in a regal pelargonium reduces plant height, leaf area and petal area. In Vitro Cell Dev. Biol. 34(Part II):58A; 1998.Google Scholar
  9. Boase, M. R.; Winefield, C. S.; Borst, N. K. Transgenic regal pelargoniums that express the rolC gene from Agrobacterium rhizogenes exhibit a dwarf vegetative and floral phenotype. In: Charity, J. A., ed. Proceedings of the 13th Biennial Meeting of the International Association for Plant Tissue Culture Conference, 7–11 February, Rotorua, New Zealand. Forest Res. Bull. 213:22; 1999.Google Scholar
  10. Boulter, M. E.; Croy, E.; Simpson, P.; Shields, R.; Croy, R. R. D.; Shirsat, A. H. Transformation of Brassica napus L. (oilseed rape) using Agrobacterium tumefaciens and Agrobacterium rhizogenes—a comparison. Plant Sci. 70:91–99; 1990.CrossRefGoogle Scholar
  11. Braun, R. H.; Reader, J. K.; Christey, M. C. Evaluation of cauliflower transgenic for resistance to Xanthomonas campestris pv. campestris. Acta Hort. 539:137–143; 2000.Google Scholar
  12. Brillanceau, M. H.; David, C.; Tempé, J. Genetic transformation of Catharanthus roseus G. Don by Agrobacterium rhizogenes. Plant Cell Rep. 8:63–66; 1989.CrossRefGoogle Scholar
  13. Caboni, E.; Lauri, P.; Tonelli, M.; Falasca, G.; Damiano, C. Root induction by Agrobacterium rhizogenes in walnut. Plant Sci. 118:203–208; 1996.CrossRefGoogle Scholar
  14. Cabrera-Ponce, J. L.; Vegas-Garcia, A.; Herrera-Estrella, L. Regeneration of transgenic papaya plants via somatic embryogenesis induced by Agrobacterium rhizogenes. In Vitro Cell. Dev. Biol. Plant 32:86–90; 1996.Google Scholar
  15. Cho, H.-J.; Farrand, S. K.; Noel, G. R.; Widholm, J. M. High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210:195–204; 2000.PubMedCrossRefGoogle Scholar
  16. Cho, H.-J.; Widholm, J. M.; Tanaka, N.; Nakanishi, Y.; Murooka, Y. Agrobacterium rhizogenes-mediated transformation and regeneration of the legume Astragalus sinicus (Chinese milk vetch). Plant Sci. 138:53–65; 1998.CrossRefGoogle Scholar
  17. Christey, M. C. Transgenic crop plants using Agrobacterium rhizogenes mediated transformation. In: Doran, P. M., ed. Hairy roots: culture and applications. Amsterdam: Harwood Academic Publishers; 1997:99–111.Google Scholar
  18. Christey, M. C.; Braun, R. H. Transgenic vegetable and forage Brassica species: rape, kale, turnip and rutabaga (Swede). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 47. Transgenic crops, II; 2001:87–101.Google Scholar
  19. Christey, M. C.; Braun, R. H.; Kenel, F. O.; Podivinsky, E. Agrobacterium rhizogenes-mediated transformation of swede. Proceedings of the 10th International Rapeseed Congress, Canberra. CDROM; 1999b.Google Scholar
  20. Christey, M. C.; Braun, R. H.; Reader, J. K. Field performance of transgenic vegetable brassicas (Brassica oleracea and B. rapa) transformed with Agrobacterium rhizogenes. SABRAO. J. Breed. Genet. 31:93–108; 1999a.Google Scholar
  21. Christey, M. C.; Braun, R. H.; Reader, J. K.; Lambie, J. S.; Forbes, M. E. Field testing transgenic Basta resistant forage kale and forage rape. Proceedings of the 10th International Rapeseed Congress, Canberra. CDROM; 1999c.Google Scholar
  22. Christey, M. C.; Sinclair, B. K. Regeneration of transgenic kale (Brassica oleracea var. acephala), rape (B. napus) and turnip (B. campestris var. rapifera) plants via Agrobacterium rhizogenes mediated transformation. Plant Sci. 87:161–169; 1992.CrossRefGoogle Scholar
  23. Christey, M. C.; Sinclair, B. K.; Braun, R. H. Phenotype of transgenic Brassica napus and B. oleracea plants obtained from Agrobacterium rhizogenes mediated transformation. In: Abstracts VIIIth International Congress of Plant Tissue and Cell Culture, Florence, Italy; 1994:157.Google Scholar
  24. Christey, M. C.; Sinclair, B. K.; Braun, R. H.; Wyke, L. Regeneration of transgenic vegetable brassicas (Brassica oleracea and B. campestris) via Ri-mediated transformation. Plant Cell Rep. 16:587–593; 1997.Google Scholar
  25. Cogan, N. O. I.; Robinson, H. T.; Pink, D. A. C.; Newbury, H. J.; Puddephat I. J. Improving transformation efficiency in vegetable Brassica crop types. Abstracts of the 3rd ISHS International Symposium on Brassicas and 12th Crucifer Geneties Workshop, Wellesbourne, September 5–9 2000. Wellesbourne: HRI; 2000; Abstract p098.Google Scholar
  26. Curtis, I. S.; Davey, M. R.; Hedden, P.; Phillips, A. L.; Ward, D. A.; Thomas, S. G.; Lowe, K. C.; Power, J. B. Evaluation of gibberellin 20-oxidase and rolC genes for dwarfing ornamental plants. In: Altman, A.; Ziv, M.; Izhar, S., eds. Plant biotechnology and in vitro biology in the 21st century. Dordrecht: Kluwer Academic Publishers; 1999:123–126.Google Scholar
  27. Curtis, I. S.; He, C. P.; Power, J. B.; Mariotti, D.; Delaat, A.; Davey, M. R. The effects of Agrobacterium rhizogenes rolab genes in lettuce. Plant Sci. 115:123–135; 1996.CrossRefGoogle Scholar
  28. Daimon, H.; Mii, M. Plant regeneration and thiophene production in hairy root cultures of Rudbeckia hirta L. used as an antagonistic plant to nematodes. Jap. J. Crop Sci. 64:650–655; 1995.Google Scholar
  29. Damiani, F.; Arcioni, S. Transformation of Medicago arborea L. with an Agrobacterium rhizogenes binary vector carrying the hygromycin resistance gene. Plant Cell Rep. 10:300–303; 1991.CrossRefGoogle Scholar
  30. Damiani, F.; Paolocci, F.; Cluster, P. D.; Arcioni, S.; Tanner, G. J.; Joseph, R. G.; Li, Y. G.; de Majnik, J.; Larkin, P. J. The maize transcription factor Sn alters proanthocyanidin synthesis in transgenic Lotus corniculatus plants Aust. J. Plant Physiol. 26:159–169; 1999.Google Scholar
  31. Damiano, C.; Archilletti, T.; Caboni, E.; Lauri, P.; Falasca, G.; Mariotti, D.; Ferraiolo, G. Agrobacterium mediated transformation of almond: in vitro rooting through localised infection of A. rhizogenes w.t. Acta Hort. 392:161–169; 1995.Google Scholar
  32. Das, S.; Jha, T. B.; Jha, S. In vitro propagation of cashewnut. Plant Cell Rep. 15:615–619; 1996.CrossRefGoogle Scholar
  33. Davey, M. R.; Mulligan, B. J.; Gartland, K. M. A.; Peel, E.; Sargent, A. W.; Morgan, A. J. Transformation of Solanum and Nicotiana species using an Ri plasmid vector. J. Exp. Bot. 38:1507–1516; 1987.CrossRefGoogle Scholar
  34. David, C.; Chilton, M. D.; Tempé, J. Conservation of T-DNA in plants regenerated from hairy root cultures. Bio/Technology 2:73–76; 1984.CrossRefGoogle Scholar
  35. Díaz, C. L.; Melchers, L. S.; Hooykaas, P. J. J.; Lugtenberg, B. J. J.; Kijne, J. W. Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis Nature 338:579–581; 1989.CrossRefGoogle Scholar
  36. Dolgov, S. V.; Mitiouchkina, T. Y.; Skryabin, K. G. Agrobacterial transformation of Chrysanthemum. Acta Hort. 447:329–334; 1997.Google Scholar
  37. Dommisse, E. M.; Leung, D. W. M.; Shaw, M. L.; Conner, A. J. Onion is a monocytyledonous host for Agrobacterium. Plant Sci. 69:249–257; 1990.CrossRefGoogle Scholar
  38. Downs, C. G.; Christey, M. C.; Davies, K. M.; King, G. A.; Sinclair, B. K.; Stevenson, D. G. Hairy roots of Brassica napus: II. Glutamine synthetase overexpression alters ammonia assimilation and the response to phosphinothricin. Plant Cell Rep. 14:41–46; 1994.Google Scholar
  39. Ebinuma, H.; Sugita, K.; Matsumaga, E.; Yamakado, M. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc. Natl Acad. Sci. USA 94:2117–2121; 1997.PubMedCrossRefGoogle Scholar
  40. Estruch, J. J.; Chriqui, D.; Grossmann, K.; Schell, J.; Spena, A. The oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J. 10:2889–2895; 1991b.PubMedGoogle Scholar
  41. Estruch, J. J.; Schell, J.; Spena, A. The protein encoded by the rolB plant oncogene hydrolyses indole glucosides. EMBO J. 10:3125–3128; 1991a.PubMedGoogle Scholar
  42. Faiss, M.; Strnad, M.; Redig, P.; Dolzak, K.; Hanus, J.; Van Onckelen, H.; Schmülling, T. Chemically induced expression of the rolC-encoded β-glucuronidase in transgenic tobacco plants and analysis of cytokinin metabolism: RolC does not hydrolyze endogenous cytokinin glucosides in planta. Plant J. 10:33–46; 1996.CrossRefGoogle Scholar
  43. Filippini, F.; Rossi, V.; Marin, O.; Trovato, M.; Costantino, P.; Downey, P. M.; Schiavo, F. L.; Terzi, M. A plant oncogene as a phosphatase. Nature 379:499–500; 1996.PubMedCrossRefGoogle Scholar
  44. Firoozabady, E.; Moy, Y.; Courtney-Gutterson, N.; Robinson, K. Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue. Bio/Technology 12:609–613; 1994.CrossRefGoogle Scholar
  45. Fladung, M. Transformation of diploid and tetraploid potato clones with the rolC gene of Agrobacterium rhizogenes and characterization of transgenic plants. Plant Breed. 104:295–304; 1990.CrossRefGoogle Scholar
  46. Fladung, M.; Grossmann K.; Ahuja, M. R. Alterations in hormonal and developmental characteristics in transgenic Populus conditioned by the rolC gene from Agrobacterium rhizogenes. J. Plant Physiol. 150:420–427; 1997a.Google Scholar
  47. Fladung, M.; Kumar, S.; Ahuja, M. R. Genetic transformation of Populus genotypes with different chimaeric gene constructs: transformation efficiency and molecular analysis. Trans. Res. 6:111–121; 1997b.CrossRefGoogle Scholar
  48. Fladung, M.; Muhs, H.-J.; Ahuja, M. R. Morphological changes in transgenic Populus carrying the rolC gene from Agrobacterium rhizogenes. Silvae Genet. 45:349–354; 1996.Google Scholar
  49. Frugis, G.; Caretto, S.; Santini, L.; Mariotti, D. Agrobacterium rhizogenes rol genes induced productivity-related phenotypical modifications in creeping-rooted alfalfa types. Plant Cell Rep. 14:488–492; 1995.CrossRefGoogle Scholar
  50. Giovannini, A.; Pecchioni, N.; Rabaglio, M.; Allavena, A. Characterization of ornamental Datura plants transformed by Agrobacterium rhizogenes. In Vitro Cell. Dev. Biol. Plant 33:101–106; 1997.Google Scholar
  51. Giovannini, A.; Zottini, M.; Morreale G.; Spena, A.; Allavena, A. Ornamental traits modification by rol genes in Osteospermum ecklonis transformed with Agrobacterium tumefaciens. In Vitro Cell. Dev. Biol. Plant 35:70–75; 1999.Google Scholar
  52. Godo, T.; Tsujii, O.; Ishikawa, K.; Mii, M. Fertile transgenic plants of Nierembergia seoparia Sendtner obtained by a mikimopine type strain of Agrobacterium rhizogenes. Sci. Hort. 68:101–111; 1997.CrossRefGoogle Scholar
  53. Golds, T. J.; Lee, J. Y.; Husnain, T.; Ghose, T. K.; Davey, M. R. Agrobacterium rhizogenes mediated transformation of the forage legumes Medicago sativa and Onobrychis viciifolia. J. Exp. Bot. 42:1147–1157; 1991.CrossRefGoogle Scholar
  54. Grant, J. E.; Dommisse, E. M.; Conner, A. J. Gene transfer to plants using Agrobacterium. In: Murray, D. R., ed Advanced methods in plant breeding and biotechnology. Wallingford: CAB International; 1991:50–73.Google Scholar
  55. Grünwald, C.; Deutsch, F.; Eckstein, D.; Fladung, M. Wood formation in rolC transgenic aspen trees. Trees 14:297–304; 2000.Google Scholar
  56. Gutièrrez-Pesce, P.; Taylor, K.; Muleo, R.; Rugini, E. Somatic embryogenesis and shoot regeneration from transgenic roots of the cherry rootstock Colt (Prunus avium × P. pseudocerasus) mediated by pRi 1855 T-DNA of Agrobacterium rhizogens. Plant Cell Rep. 17:574–580; 1998.CrossRefGoogle Scholar
  57. Hamill, J. D.; Lidgett, A. J. Hairy root cultures—opportunities and key protocols for studies in metabolic engineering. In: Doran, P. M., ed. Hairy roots: culture and applications. Amsterdam: Harwood Academic Publishers; 1997:1–30.Google Scholar
  58. Han, K.-H.; Gordon, M. P.; Strauss, S. H. High-frequency transformation of cottonwoods (genus Populus) by Agrobacterium rhizogenes. Can. J. For. Res. 27:464–470; 1997.CrossRefGoogle Scholar
  59. Han, K. H.; Keathley, D. E.; Davis, J. M.; Gordon, M. P. Regeneration of a transgenic woody legume (Robinia pseudoacacia L., black locust) and morphological alterations induced by Agrobacterium rhizogenes-mediated transformation. Plant Sci. 88:149–157; 1993.CrossRefGoogle Scholar
  60. Handa, T. Genetic transformation of Antirrhinum majus L. and inheritance of altered phenotype induced by Ri T-DNA. Plant Sci. 81:199–206; 1992.CrossRefGoogle Scholar
  61. Handa, T.; Transformation of prairie gentian (Eustoma grandiflorum) with Agrobacterium rhizogenes harboring β-glucuronidase (GUS) and neomycin phosphotransferase II (NPT II) genes. J. Jap. Soc. Hort. Sci. 64:913–918; 1996.Google Scholar
  62. Handa, T.; Sugimura, T.; Kato, E.; Kamada, H.; Takayanagi, K. Genetic transformation of Eustoma grandiflorum with rol genes. Acta Hort. 392:209–218; 1995.Google Scholar
  63. Hänisch ten Cate, C. H.; Ennik, E.; Roest, S.; Ramulu, K. S.; Dijkhuis, P.; de Groot, B. Regeneration and characterization of plants from potato root lines transformed by Agrobacterium rhizogenes. Theor. Appl. Genet. 75:452–459; 1988.CrossRefGoogle Scholar
  64. Hansen, J.; Jørgensen, J.-E.; Stougaard, J.; Marcker, K. A. Hairy roots—a short cut to transgenic root nodules. Plant Cell Rep. 8:12–15; 1989.CrossRefGoogle Scholar
  65. Hatamoto, H.; Boulter, M. E.; Shirsat, A. H.; Croy, E. J.; Ellis, J. R. Recovery of morphologically normal transgenic tobacco from hairy roots co-transformed with Agrobacterium rhizogenes and a binary vector plasmid. Plant Cell Rep. 9:88–92; 1990.CrossRefGoogle Scholar
  66. Hatta, M.; Beyl, C. A.; Garton, S.; Diner, A. M. Induction of roots on jujube softwood cuttings using Agrobacterium rhizogenes. J. Hort. Sci. 71:881–886; 1996.Google Scholar
  67. Henzi, M. X.; Christey, M. C.; McNeil, D. L. Factors that influence Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica). Plant Cell Rep. 19:994–999; 2000a.CrossRefGoogle Scholar
  68. Henzi, M. X.; Christey, M. C.; McNeil, D. L. Morphological characterisation and agronomic evaluation of transgenic broccoli (Brassica oleracea L. var. italica) containing an antisense ACC oxidase gene. Euphytica 113:9–18; 2000b.CrossRefGoogle Scholar
  69. Henzi, M. X.; Christey, M. C.; McNeil, D. L.; Davies, K. M. Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica) with an antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene. Plant Sci. 143:55–62; 1999a.CrossRefGoogle Scholar
  70. Henzi, M. X.; McNeil, D. L.; Christey, M. C.; Lill, R. E. A tomato antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene causes reduced ethylene production in transgenic broccoli. Aus. J. Plant Physiol. 26:179–183; 1999b.CrossRefGoogle Scholar
  71. Hernalsteens, J. P.; Bytebier, B.; Van Montagu, M. Transgenic asparagus. In: Kung, S. D.; Wu, R., eds. Transgenic plants, vol. 2. Present status and social and economic impacts. San Diego: Academic Press; 1993:35–46.Google Scholar
  72. Holefors, A.; Xue, Z.-T.; Welander, M. Transformation of the apple rootstock M26 with the rolA gene and its influence on growth. Plant Sci. 136:69–78; 1998.CrossRefGoogle Scholar
  73. Hoshino, Y.; Türkan, I.; Mii, M. Transgenic bialaphos-resistant snapdragon (Antirrhinum majus L.) produced by Agrobacterium rhizogenes transformation. Sci. Hort. 76:37–57; 1998.CrossRefGoogle Scholar
  74. Hosokawa, K.; Matsuki, R.; Oikawa, Y.; Yamamura, S. Genetic transformation of gentian using wild-type Agrobacterium rhizogenes. Plant Cell Tiss. Organ Cult. 51:137–140; 1997.CrossRefGoogle Scholar
  75. Hosoki, T.; Shiraishi, K.; Kigo, T.; Ando, M. Transformation and regeneration of ornamental kale (Brassica oleracea var. acephala DC) mediated by Agrobacterium rhizogenes. Sci. Hort. 40:259–266; 1989.CrossRefGoogle Scholar
  76. Jasik, J.; Boggetti, B.; Caricato, G.; Mantell, S. Characterisation of morphology and root formation in the model woody perennial shrub Solanum aviculare Forst expressing rolABC genes of Agrobacterium rhizogenes. Plant Sci. 124:57–68; 1997.CrossRefGoogle Scholar
  77. Kamada, H.; Saitou, T.; Harada, H. No requirement of vernalization for flower formation in Ri-transformed Cichorium plants. Plant Tiss. Cult. Lett. 9:206–208; 1992.Google Scholar
  78. Kaneyoshi, J.; Kobayashi, S. Characteristics of transgenic trifoliate orange (Poncirus trifoliata Raf.) possessing the rolC gene of Agrobacterium rhizogenes Ri plasmid. J. Jap. Soc. Hort. Sci. 68:734–738; 1999.Google Scholar
  79. Kifle, S.; Shao, M.; Jung, C.; Cai, D. An improved transformation protocol for studying gene expression in hairy roots of sugar beet (Beta vulgaris L.). Plant Cell Rep. 18:514–519; 1999.CrossRefGoogle Scholar
  80. Kiyokawa, S.; Kikuchi, Y.; Kamada, H.; Harada, H. Genetic transformation of Begonia tuberhybrida by Ri rol genes. Plant Cell Rep. 15:606–609; 1996.CrossRefGoogle Scholar
  81. Kumar, V.; Jones, B.; Davey, M. R. Transformation by Agrobacterium rhizogenes and regeneration of transgenic shoots of the wild soybean Glycine argyrea. Plant Cell Rep. 10:135–138; 1991.Google Scholar
  82. Kurioka, Y.; Suzuki, Y.; Kamada, H.; Harada, H. Promotion of flowering and morphological alterations in Atropa belladonna transformed with a CaMV 35S-rolC chimeric gene of the Ri plasmid. Plant Cell Rep. 12:1–6; 1992.CrossRefGoogle Scholar
  83. Lambert, C.; Bianco, J.; Garello, G.; Le Page-Degivry, M.-T. Alteration of hormonal levels and hormone sensitivity by Ri T-DNA-transformation of apple cuttings. J. Plant Physiol. 153:677–683; 1998.Google Scholar
  84. Lambert, C.; Tepfer, D. Use of Agrobacterium rhizogenes to create transgenic apple trees having an altered organogenic response to hormones. Theor. Appl. Genet. 85:105–109; 1992.CrossRefGoogle Scholar
  85. Levesque, H.; Delepelaire, P.; Rouze, P.; Slightom, J.; Tepfer, D. Common evolutionary origin of the central portions of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti T-DNAs of Agrobacterium tumefaciens. Plant Mol. Biol. 11:731–744; 1988.CrossRefGoogle Scholar
  86. Limami, M. A.; Sun, L.-Y.; Douat, C.; Helgeson, J.; Tepfer, D. Natural genetic transformation by Agrobacterium rhizogenes. Annual flowering in two biennials, Belgian endive and carrot. Plant Physiol. 118:543–550; 1998.PubMedCrossRefGoogle Scholar
  87. Macrae, S.; Van Staden, J. Agrobacterium rhizogenes-mediated transformation to improve rooting ability of eucalypts. Tree Physiol. 12:411–418; 1993.PubMedGoogle Scholar
  88. Manners, J. M.; Way, H. Efficient transformation with regeneration of the tropical pasture legume Stylosanthes humilis using Agrobacterium rhizogenes and a Ti plasmid-binary vector system. Plant Cell Rep. 8:341–345; 1989.CrossRefGoogle Scholar
  89. Mariotti, D.; Fontana, G. S.; Santini, L.; Costantino, P. Evaluation under field conditions of the morphological alterations (‘hairy root phenotype’) induced on Nicotiana tobacum by different Ri plasmid T-DNA genes. J. Genet. Breed. 43:157–164; 1989.Google Scholar
  90. Martin-Tanguy, J.; Corbineau, F.; Burtin, D.; Ben-Hayyim, G.; Tepfer, D. Genetic transformation with a derivative of rolC from Agrobacterium rhizogenes and treatment with α-aminoisobutyric acid produce similar phenotypes and reduce ethylene production and the accumulation of water-insoluble polyamine-hydroxycinnamic acid conjugates in tobacco flowers. Plant Sci. 93:63–76; 1993.CrossRefGoogle Scholar
  91. Martin-Tanguy, J.; Sun, L.-Y.; Burtin, D.; Vernoy, R.; Rossin, N.; Tepfer, D. Attenuation of the phenotype caused by the root-inducing, left-hand, transferred DNA and its rolA gene. Plant Physiol. 111:259–267; 1996.PubMedGoogle Scholar
  92. McAfee, B. J.; White, E. E.; Pelcher, L. E.; Lapp, M. S. Root induction in pine (Pinus) and larch (Larix) spp. using Agrobacterium rhizogenes. Plant Cell Tiss. Organ Cult. 34:53–62; 1993.CrossRefGoogle Scholar
  93. McClure, B. A.; Hagen, G.; Brown, C. S.; Gee, M. A.; Guilfoyle, T. J. Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell 1:229–239; 1989.PubMedCrossRefGoogle Scholar
  94. McInnes, E.; Morgan, A. J.; Mulligan, B. J.; Davey, M. R. Phenotypic effects of isolated pRiA4 TL-DNA rol genes in the presence of intact TR-DNA in transgenic plants of Solanum dulcamara L. J. Exp. Bot. 42:1279–1286; 1991.CrossRefGoogle Scholar
  95. Mihaljević, S.; Katavić, V.; Jelaska, S. Root formation in micropropagated shoots of Sequoia sempervirens using Agrobacterium. Plant Sci. 141:73–80; 1999.CrossRefGoogle Scholar
  96. Mihaljević, S.; Stipković, S.; Jelaska, S. Increase of root induction in Pinus nigra explants using agrobacteria. Plant Cell Rep. 15:610–614; 1996.CrossRefGoogle Scholar
  97. Minlong, C.; Takayanagi, K.; Kamada, H.; Nishimura, S.; Handa, T. Transformation of Antirrhinum majus L. by a rol-type multi-auto-transformation (MAT) vector system. Plant Sci. 159:273–280; 2000.PubMedCrossRefGoogle Scholar
  98. Momčilović, I.; Grubišić, D.; Kojić, M.; Nešković, M. Agrobacterium rhizogenes-mediated transformation and plant regeneration of four Gentiana species. Plant Cell Tiss. Organ Cult. 50:1–6; 1997.CrossRefGoogle Scholar
  99. Montanelli, C.; Nascari, G. Introduction of an antibacterial gene in potato (Solanum tuberosum L.) using a binary vector in Agrobacterium rhizogenes. J. Genet. Breed. 45:307–316; 1991.Google Scholar
  100. Morgan, A. J.; Cox, P. N.; Turner, D. A.; Peel, E.; Davey, M. R.; Gartland, K. M. A.; Mulligan, B. J. Transformation of tomato using an Ri plasmid vector. Plant Sci. 49:37–49; 1987.CrossRefGoogle Scholar
  101. Mugnier, J. Establishment of new axenic hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Rep. 7:9–12; 1988.CrossRefGoogle Scholar
  102. Mugnier, J. Mycorrhizal interactions and the effects of fungicides, nematicides and herbieides on hairy root cultures. In: Doran, P. M., ed. Hairy roots: culture and applications. Amsterdam: Harwood Academic Publishers; 1997:123–132.Google Scholar
  103. Nakano, M.; Hoshino, Y.; Mii, M. Regeneration of transgenic plants of grapevine (Vitis vinifera L.) via Agrobacterium rhizogenes-mediated transformation of embryogenic calli. J. Exp. Bot. 45:649–656; 1994.CrossRefGoogle Scholar
  104. Nenz, E.; Pupilli, F.; Paolocci, F.; Damiani, F.; Cenci, C. A.; Arcioni, S. Plant regeneration and genetic transformation of Lotus angustissimus. Plant Cell Tiss. Organ Cult. 45:145–152; 1996.CrossRefGoogle Scholar
  105. Newbury, H. J.; Senior, I. Transgenic Antirrhinum. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 48. Transgenic crops III; 2001:16–26.Google Scholar
  106. Nilsson, O.; Moritz, T.; Imbault, N.; Sandberg, G.; Olsson, O. Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA. Plant Physiol. 102:363–371; 1993.PubMedGoogle Scholar
  107. Nilsson, O.; Moritz, T.; Sundberg, B.; Sandberg, G.; Olsson, O. Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiol. 112:493–502; 1996.PubMedGoogle Scholar
  108. Noda, T.; Tanaka, N.; Mano, Y.; Nabeshima, S.; Ohkawa, H.; Matsui, C. Regeneration of horseradish hairy roots incited by Agrobacterium rhizogenes infection. Plant Cell Rep. 6:283–286; 1987.CrossRefGoogle Scholar
  109. Ohara, A.; Akasaka, Y.; Daimon, H.; Mii, M. Plant regeneration from hairy roots induced by infection with Agrobacterium rhizogenes in Crotalaria juncea L. Plant Cell Rep. 19:563–568; 2000.CrossRefGoogle Scholar
  110. Oksman-Caldentey, K. M.; Kivelä, O.; Hiltunen, R. Spontaneous shoot organogenesis and plant regeneration from hairy root cultures of Hyoscyamus muticus. Plant Sci. 78:129–136; 1991.CrossRefGoogle Scholar
  111. Ondrej, M.; Biskova, R. Differentiation of Petunia hybrida tissues transformed by Agrobacterium rhizogenes and Agrobacterium tumefaciens. Biol. Plant. 28:152–155; 1986.Google Scholar
  112. Orlova, I. V.; Semenyuk, E. G.; Volodin, V. V.; Nosov, A. M.; Bur'yanov, Y. I. The system of regeneration and gene transformation of Rhaponticum carthamoides plants accumulating ecdysteroids. Russian J. Plant Physiol. 47:355–359; 2000.Google Scholar
  113. Otani, M.; Mii, M.; Handa, T.; Kamada, H.; Shimada, T. Transformation of sweet potato (Ipomoea batatas (L.) Lam.) plants by Agrobacterium rhizogenes. Plant Sci. 94:151–159; 1993.CrossRefGoogle Scholar
  114. Otani, M.; Shimada, T.; Kamada, H.; Teruya, H.; Mii, M. Fertile transgenic plants of Ipomoea trichocarpa Ell. induced by different strains of Agrobacterium rhizogenes. Plant Sci. 116:169–175; 1996.CrossRefGoogle Scholar
  115. Patena, L.; Sutter, E. G.; Dandekar, A. M. Root induction by Agrobacterium rhizogenes in a difficult-to-root woody species. Acta Hort. 227:324–329; 1988.Google Scholar
  116. Pavingerova, D.; Ondrej, M. Comparison of hairy root and crown gall tumors of Arabidopsis thaliana. Biol. Plant. 28:149–151; 1986.Google Scholar
  117. Pellegrineschi, A.; Damon, J. P.; Valtorta, N.; Paillard, N.; Tepfer, D. Improvement of ornamental characters and fragrance production in lemon-scented geranium through genetic transformation by Agrobacterium rhizogenes. Bio/Technology 12:64–68; 1994.CrossRefGoogle Scholar
  118. Pellegrineschi, A.; Davolio-Mariani, O. Agrobacterium rhizogenes-mediated transformation of scented geranium. Plant Cell Tiss. Organ Cult. 47:79–86; 1996.CrossRefGoogle Scholar
  119. Pérez-Molphe-Balch, E.; Ochoa-Alejo, N. Regeneration of transgenic plants of Mexican lime from Agrobacterium rhizogenes-transformed tissues. Plant Cell Rep. 17:591–596; 1998.CrossRefGoogle Scholar
  120. Phelep, M.; Petit, A.; Martin, L.; Duhoux, E.; Tempé, J. Transformation and regeneration of a nitrogen-fixing tree, Allocasuarina verticillata Lam. Bio/Technology 9:461–466; 1991.CrossRefGoogle Scholar
  121. Požárková, D.; Šiffelová, G.; Našinec, V.; Macháčková, I. Effects of the rolABC, rolAB, and CaMV 35S-rolC genes on growth and nitrogen fixation in Lotus corniculatus L. Biol. Plant. 37:491–499; 1995.Google Scholar
  122. Pradel, H.; Dumke-Lehmann, U.; Diettrich, B.; Luckner, M. Hairy root cultures of Digitalis lanata. Secondary metabolism and plant regeneration. J. Plant Physiol. 151:209–215; 1997.Google Scholar
  123. Puddephat, I.; Cogan, N. O. I.; Robinson, H. T.; Pink, D. A. C.; Barbara, D.; Higgins, J.; King, G. J.; Kearsey, M. J.; Newbury, H. J. Genetic constraints to the transformation of Brassica oleracea. Abstracts of the 3rd ISHS International Symposium on Brassicas and 12th Crucifer Genetics Workshop, Wellesbourne, September 5–9 2000. Wellesbourne: HRI; 2000: Abstract os29.Google Scholar
  124. Puddephat, I. J.; Robinson, H. T.; Fenning, T. M.; Barbara, D. J.; Morton, A.; Pink, D. A. C. Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenes-mediated co-transformation and selection of transformed hairy roots by GUS assay. Mol. Breeding; 2001(in press).Google Scholar
  125. Quandt, H.-J.; Pühler, A.; Broer, I. Transgenic root nodules of Vicia hirsuta: a fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol. Plant-Microbe Interact. 6:699–706; 1993.Google Scholar
  126. Rech, E. L.; Golds, T. J.; Husnain, T.; Vainstein, M. H.; Jones, B.; Hammatt, N.; Mulligan, B. J.; Davey, M. R. Expression of a chimaeric kanamycin resistance gene introduced into the wild soybean Glycine canescens using a cointegrate Ri plasmid vector. Plant Cell Rep. 8:33–36; 1989.CrossRefGoogle Scholar
  127. Roy, M. C. Plant growth response to Agrobacterium rhizogenes. M.Appl.Sc. thesis. Lincoln College, University of Canterbury, New Zealand; 1989.Google Scholar
  128. Rugini, E.; Caricato, G.; Muganu, M.; Taratufolo, C.; Camilli, M.; Cammilli, C. Genetic stability and agronomic evaluation of six-year-old transgenic kiwi plants for rolABC and rolB gene. Acta Hort. 447:609–610; 1997.Google Scholar
  129. Rugini, E.; Mariotti, D. Agrobacterium rhizogenes T-DNA genes and rooting in woody species. Acta Hort. 300:301–308; 1991.Google Scholar
  130. Rugini, E.; Pellegrineschi, A.; Mencuccini, M.; Mariotti, D. Increase of rooting ability in the woody species kiwi (Actinidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes rol genes. Plant Cell Rep. 10:291–295; 1991.CrossRefGoogle Scholar
  131. Saito, K.; Yamazaki, M.; Anzai, H.; Yoneyama, K.; Murakoshi, I. Transgenic herbicide-resistant Atropa belladonna using an Ri binary vector and inheritance of the transgenic trait. Plant Cell Rep. 11:219–224; 1992.CrossRefGoogle Scholar
  132. Schmülling, T.; Schell, J.; Spena, A. Single genes from Agrobacterium rhizogenes influence plant development. EMBO J. 7:2621–2629; 1988.PubMedGoogle Scholar
  133. Scorza, R.; Zimmerman, T. W.; Cordts, J. M.; Footen, K. J.; Ravelonandro, M. Horticultural characteristics of transgenic tobacco expressing the rolC gene from Agrobacterium rhizogenes. J. Am. Soc. Hort. Sci. 119:1091–1098; 1994.Google Scholar
  134. Shahin, E. A.; Sukhapinda, K.; Simpson, R. B.; Spivey, R. Transformation of cultivated tomato by a binary vector in Agrobacterium rhizogenes: transgenic plants with normal phenotypes harbor binary vector T-DNA, but no Ri-plasmid T-DNA. Theor. Appl. Genet. 72:770–777; 1986.CrossRefGoogle Scholar
  135. Shen, W. H.; Davioud, E.; David, C.; Barbier-Brygoo, H.; Tempé, J.; Guern, J. High sensitivity to auxin is a common feature of hairy root. Plant Physiol. 94:554–560; 1990.PubMedCrossRefGoogle Scholar
  136. Shin, D. I.; Podila, G. K.; Huang, Y.; Karnosky, D. F. Transgenic larch expressing genes for herbicide and insect resistance. Can. J. For. Res. 24:2059–2067; 1994.Google Scholar
  137. Sinkar, V. P.; White, F. F.; Furner, I. J.; Abrahamsen, M.; Pythoud, F.; Gordon, M. P. Reversion of aberrant plants transformed with Agrobacterium rhizogenes is associated with the transcriptional inactivation of the TL-DNA genes. Plant Physiol. 86:584–590; 1988.PubMedGoogle Scholar
  138. Stiller, J.; Martirani, L.; Tuppale, S.; Chian, R.-J.; Chiurazzi, M.; Gresshoff, P. M. High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. J. Exp. Bot. 43:1357–1365; 1997.CrossRefGoogle Scholar
  139. Stiller, J.; Nasinec, V.; Svoboda, S.; Nemcova, B.; Machackova, I. Effects of agrobacterial oncogenes in kidney vetch (Anthyllis vulneraria L.). Plant Cell Rep. 11:363–367; 1992.CrossRefGoogle Scholar
  140. Strobel, G. A.; Nachmias, A.; Hess, W. M. Improvements in the growth and yield of olive trees by transformation with the Ri plasmid of Agrobacterium rhizogenes. Can. J. Bot. 66:2581–2585; 1988.CrossRefGoogle Scholar
  141. Stummer, B. E.; Smith, S. E.; Langridge, P. Genetic transformation of Verticordia grandis (Myrtaceae) using wild-type Agrobacterium rhizogenes and binary Agrobacterium vectors. Plant Sci. 111:51–62; 1995.CrossRefGoogle Scholar
  142. Suginuma, C.; Akihama, T. Transformation of gentian with Agrobacterium rhizogenes. Acta Hort. 392:153–160; 1995.Google Scholar
  143. Sugita, K.; Matsunaga, E.; Ebinuma, H. Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Rep. 18:941–947; 1999.CrossRefGoogle Scholar
  144. Sun, L. Y.; Touraud, G.; Charbonnier, C.; Tepfer, D. Modification of phenotype in Belgian endive (Cichorium intybus) through genetic transformation by Agrobacterium rhizogenes: conversion from biennial to annual flowering. Transgenic Res. 1:14–22; 1991.CrossRefGoogle Scholar
  145. Tanaka, N.; Matsumoto, T. Regenerants from Ajuga hairy roots with high productivity of 20-hydroxyecdysone. Plant Cell Rep. 13:87–90; 1993.CrossRefGoogle Scholar
  146. Tanaka, N.; Takao, M.; Matsumoto, T. Agrobacterium rhizogenes-mediated transformation and regeneration of Vinca minor L. Plant Tiss. Cult. Lett. 11:191–198; 1994.Google Scholar
  147. Tao, R.; Handa, T.; Tamura, M.; Sugiura, A. Genetic transformation of Japanese persimmon (Diospyros kaki L.) by Agrobacterium rhizogenes wild type strain A4. J. Jap. Soc. Hort. Sci. 63:283–289; 1994.Google Scholar
  148. Taylor, B. H.; Amasino, R. M.; White, F. F.; Nester, E. W.; Gordon, M. P. T-DNA analysis of plants regenerated from hairy root tumors. Mol. Gen. Genet. 201:554–557; 1985.CrossRefGoogle Scholar
  149. Tepfer, D. Transformation of several species of higher plants by Agrobacterium rhizogenes; sexual transmission of the transformed genotype and phenotype. Cell 37:959–967; 1984.PubMedCrossRefGoogle Scholar
  150. Tepfer, D. Ri T-DNA from Agrobacterium rhizogenes: a source of genes having applications in rhizosphere biology and plant development, ecology, and evolution. In: Kosuge, T.; Nester, E. W., eds. Plant-microbe interactions. Molecular and genetic perspectives, vol. 3. New York: McGraw-Hill; 1989:294–342.Google Scholar
  151. Tepfer, D. Genetic transformation using Agrobacterium rhizogenes. Physiol. Plant. 79:140–146; 1990.CrossRefGoogle Scholar
  152. Thomas, M. R.; Rose, R. J.; Nolan, K. E. Genetic transformation of Medicago truncatula using Agrobacterium with genetically modified Ri and disarmed Ti plasmids. Plant Cell Rep. 11:113–117; 1992.CrossRefGoogle Scholar
  153. Torregrosa, L.; Bouquet, A. Agrobacterium rhizogenes and A. tumefaciens co-transformation to obtain grapevine hairy roots producing the coat protein of grapevine chrome mosaic nepovirus. Plant Cell Tiss. Organ Cult. 49:53–62; 1997.CrossRefGoogle Scholar
  154. Trulson, A. J.; Simpson, R. B.; Shahin, E. A. Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenes. Theor. Appl. Genet. 73:11–15; 1986.CrossRefGoogle Scholar
  155. Tzfira, T.; Ben-Meir, H.; Vainstein, A.; Altman, A. Highly efficient transformation and regeneration of aspen plants through shoot-bud formation in root culture. Plant Cell Rep. 15:566–571; 1996.CrossRefGoogle Scholar
  156. Tzfira, T.; Vainstein, A.; Altman, A. rol-gene expression in transgenic aspen (Populus tremula) plants results in accelerated growth and improved stem production index. Trees 14:49–54; 1999.Google Scholar
  157. Tzfira, T.; Vinocur, B.; Altman, A.; Vainstein, A. rol-transgenic Populus tremula: root development, root-borne bud regeneration and in vitro propagation efficiency. Trees 12:464–471; 1998.Google Scholar
  158. Uozumi, N.; Kobayashi, T. Artificial seed production through hairy root regeneration. In: Doran, P. M., ed. Hairy roots: culture and applications. Amsterdam: Harwood Academic Publishers; 1997:113–122.Google Scholar
  159. Uozumi, N.; Ohtake, Y.; Nakashimada, Y.; Morikawa, Y.; Tanaka, N.; Kobayashi, T. Efficient regeneration from GUS-transformed Ajuga hairy root. J. Ferm. Bioeng. 81:374–378; 1996.CrossRefGoogle Scholar
  160. Uzé, M.; Potrykus, I.; Sautter, C. Factors influencing T-DNA transfer from Agrobacterium to precultured immature wheat embryos (Triticum aestivum L.). Cereal Res. Commun. 28:17–23; 2000.Google Scholar
  161. van Altvorst, A. C.; Bino, R. J.; van Dijk, A. J.; Lamers, A. M. J.; Lindhout, W. H.; van der Mark, F.; Dons, J. J. M. Effects of the introduction of Agrobacterium rhizogenes rol genes on tomato plant and flower development. Plant Sci. 83:77–85; 1992.CrossRefGoogle Scholar
  162. van der Salm, T. P. M.; Hänisch ten Cate, C. H.; Dons, H. J. M. Prospects for applications of rol genes for crop improvement. Plant Mol. Biol. Rep. 14:207–228; 1996.Google Scholar
  163. van der Salm, T. P. M.; van der Toorn, C. J. G.; Bouwer, R.; Hänisch ten Cate, C. H.; Dons, H. J. M. Production of ROL gene transformed plants of Rosa hybrida L. and characterization of their rooting ability. Mol. Breed. 3:39–47; 1997.CrossRefGoogle Scholar
  164. Vinterhalter, B.; Orbović, V.; Vinterhalter, D. Transgenic root cultures of Gentiana punctata L. Acta Soc. Bot. Pol. 68:275–280; 1999.Google Scholar
  165. Visser, R. G. F.; Hesseling-Meinders, A.; Jacobsen, E.; Nijdam, H.; Witholt, B.; Feenstra, W. J. Expression and inheritance of inserted markers in binary vector carrying Agrobacterium rhizogenes-transformed potato (Solanum tuberosum L.). Theor. Appl. Genet. 78:705–714; 1989.Google Scholar
  166. Walton, N. J.; Belshaw, N. J. The effect of cadaverine on the formation of anabasine from lysine in hairy root cultures of Nicotiana hesperis. Plant Cell Rep. 7:115–118; 1988.CrossRefGoogle Scholar
  167. Webb, K. J.; Jones, s.; Robbins, M. P.; Minchin, F. R. Characterization of transgenic root cultures of Trifolium repens, Trifolium pratense and Lotus corniculatus and transgenic plants of Lotus corniculatus. Plant Sci. 70:243–254; 1990.CrossRefGoogle Scholar
  168. Welander, M.; Pawlicki, N.; Holefors, A.; Wilson, F. Genetic transformation of apple rootstock M26 with rolB gene and its influence on rooting. J. Plant Physiol. 53:371–380; 1998.Google Scholar
  169. Welander, M.; Zhu, L. H. The rooting ability of rolB transformed clones of the apple rootstock M26 and its relation to gene expression. Acta Hort. 521:133–138; 2000.Google Scholar
  170. White, F. F.; Taylor, B. H.; Huffman, G. A.; Gordon, M. P.; Nester, E. W. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J. Bacteriol. 164:33–44; 1985.PubMedGoogle Scholar
  171. Winefield, C.; Lewis, D.; Arathoon, S.; Deroles, S. Alteration of Petunia plant form through the introduction of the rolC gene from Agrobacterium rhizogenes. Mol. Breed. 5:543–551; 1999.CrossRefGoogle Scholar
  172. Yamakawa, Y.; Chen, L. H. Agrobacterium rhizogenes-mediated transformation of kiwifruit (Actinidia deliciosa) by direct formation of adventitious buds. J. Jap. Soc. Hort. Sci. 64:741–747; 1996.CrossRefGoogle Scholar
  173. Yamazaki, M.; Son, L.; Hayashi, T.; Morita, N.; Asamizu, T.; Mourakoshi, I.; Saito, K. Transgenic fertile Scoparia dulcis L., a folk medicinal plant, conferred with a herbicide-resistant trait using an Ri binary vector. Plant Cell Rep. 15:317–321; 1996.CrossRefGoogle Scholar
  174. Yang, D.-C.; Choi, Y.-E. Production of transgenic plants via Agrobacterium rhizogenes-mediated transformation of Panax ginseng. Plant Cell Rep. 19:491–496; 2000.CrossRefGoogle Scholar
  175. Yoshimatsu, K.; Shimomura, K. Transformation of opium poppy (Papaver somniferum L.) with Agrobacterium rhizogenes MAFF 03-01724. Plant Cell Rep. 11:132–136; 1992.CrossRefGoogle Scholar
  176. Zhan, X.; Jones, D. A.; Kerr, A. The pTiC58 tzs gene promotes high-efficiency root induction by agropine strain 1855 of Agrobacterium rhizogenes. Plant Mol. Biol. 14:785–792; 1990.PubMedCrossRefGoogle Scholar
  177. Zhan, X. C.; Jones, D. A.; Kerr, A. Regeneration of flax plants transformed by Agrobacterium rhizogenes. Plant Mol. Biol. 11:551–559; 1988.CrossRefGoogle Scholar
  178. Zhu, L. H.; Welander, M. Growth characteristics of the untransformed and transformed apple rootstock M26 with rolA and rolB genes under steady-state nutrient supply conditions. Acta Hort. 521:139–143; 2000.Google Scholar
  179. Zuker, A.; Tzfira, T.; Scovel, G.; Ovadis, M.; Shklarman, E.; Itzhaki, H.; Vainstein, A. RolC-transgenic carnation with improved horticultural traits: quantitative and qualitative analyses of greenhouse-grown plants. J. Am. Soc. Hort. Sci. 126:13–18; 2001.Google Scholar

Copyright information

© Society for In Vitro Biology 2001

Authors and Affiliations

  1. 1.Crop & Food ResearchChristchurchNew Zealand

Personalised recommendations