Advertisement

Optimized somatic embryogenesis in Pinus strobus L.

  • Krystyna Klimaszewska
  • Yill-Sung Park
  • Cathy Overton
  • Ian Maceacheron
  • Jan M. Bonga
Article

Summary

Somatic embryogenesis (SE) initiation in Pinus strobus was optimized by the manipulation of plant growth regulator (PGR) concentrations in the culture medium. Modified Litvay medium (MLV) of Litvay et al. (1985) supplemented with lower than routinely used PGR concentration increased initiation of established embryogenic cultures from approximately 20 to 53%. The original developmental stage of zygotic embryos had a pronounced effect on the SE response. The optimum stage was the pre- to shortly post-cleavage stage. A substantial genetic influence on initiation of SE was indicated by a significant variance component due to families. Genotype X collection date and genotype X media interactions had large effects on initiation of SE. The PGR levels in the culture medium prior to maturation had a significant effect on subsequent production of mature somatic embryos. Embryogenic tissue initiated and proliferated on medium with a low level of PGR consistently produced a high number of somatic embryos, indicating that optimized initiation protocol also enhanced somatic embryo production. Somatic embryos of 93 embryogenic lines (representing five families) that were initiated on media with different PGR concentrations were converted to plants at an overall frequency of 76%, and grown in the greenhouse. With these improved protocols, application of P. strobus SE in commercial clonal forestry is feasible as an alternative to traditional breeding and reforestation.

Key words

conversion to plants eastern white pine embryogenic cultures plant growth regulators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banerjee, S. N.; Radforth, N. W. In vitro studies on the developing embryos of Pinus resinosa, Bot. Mag. Tokyo 82:329–340; 1969.Google Scholar
  2. Becwar, M. R.; Nagmani, R.; Wann, S. R. Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can. J. For. Res. 20:810–817; 1990.Google Scholar
  3. Becwar, M. R.; Wann, S. R.; Johnson, M. A.; Verhagen, R. P.; Feirer, R. P.; Nagmani, R. Development and characterization of in vitro embryogenic systems in conifers. In: Ahuja, M. R., ed. Somatic cell genetics of woody plants, Dordrecht, Kluwer Academic Publishers; 1988:1–14.Google Scholar
  4. Chalutz, E.; Mattoo, A. K.; Fuchs, Y. Biosynthesis of ethylene: the effect of phosphate. Plant Cell Environ. 3:349–356; 1980.CrossRefGoogle Scholar
  5. Cheliak, W. M.; Klimaszewska, K. Genetic variation in somatic embryogenic response in open-pollinated families of black spruce. Theor. Appl. Genet. 82:185–190; 1991.CrossRefGoogle Scholar
  6. Dogra, P. D. Morphology, development and nomenclature of conifer embryo. Phytomorphology 28:307–322, 1978.Google Scholar
  7. Filonova, L. H.; Bozhkov, P. V.; von Arnold, S. Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J. Exp. Bot. 51:249–264; 2000.PubMedCrossRefGoogle Scholar
  8. Finer, J. J.; Kriebel H. B.; Becwar, M. R. Initiation of embryogenic callus and suspension cultures of eastern white pine (Pinus strobus L.). Plant Cell Rep. 8:203–206; 1989.CrossRefGoogle Scholar
  9. Garin, E.; Isabel, N.; Plourde, A. Screening of large numbers of seed families of Pinus strobus L. for somatic embryogenesis from immature and mature zygotic embryos. Plant Cell Rep. 18:37–43; 1998.CrossRefGoogle Scholar
  10. Gupta, P. K.; Durzan, D. J. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep. 4:177–179; 1985.CrossRefGoogle Scholar
  11. Gyulai, G.; Janovszky, J.; Kiss, E.; Lelik, L.; Csillag, A.; Heszky, L. E. Callus initiation and plant regeneration from inflorescence primordia of the intergeneric hybrid Agropyron repens (L.) Beauv. x Bromus inermis Leyss. cv.nanus on a modified nutritive medium. Plant Cell Rep. 11:266–269; 1992.CrossRefGoogle Scholar
  12. Handley, L. W.; Becwar, M. R.; Chesick, E. E.; Coke, J. E.; Godbey, A. P.; Rutter, M. R. Research and development of commercial tissue culture systems in loblolly pine. TAPPI J. 78:169–175; 1995.Google Scholar
  13. Högberg, K. A.; Ekberg, I.; Norell, L.; von Arnold, S. Integration of somatic embryogenesis in a tree breeding programme: a case study with Picea abies. Can. J. For. Res. 28:1536–1545; 1998.CrossRefGoogle Scholar
  14. Jensen, W. A. Botanical histochemistry: principles and practice. San Francisco. W.H. Freeman; 1962.Google Scholar
  15. Jones, N. B.; van Staden, J. Plantlet production from somatic embryos of Pinus patula. J. Plant Physiol. 145:519–525; 1995.Google Scholar
  16. Kaul, K. Somatic embryogenesis in eastern white pine (Pinus strobus L.). In: Jain, S.; Gupta, P.; Newton, R., eds., Somatic embryogenesis in woody plants, vol. 3 Dordrecht: Kluwer Academic Publishers; 1995:257–268.Google Scholar
  17. Klimaszewska, K.; Bernier-Cardou, M.; Cyr, D. R.; Sutton, B. C. S. Influence of gelling agents on culture medium gel strength, water availability, tissue water potential, and maturation response in embryogenic cultures of Pinus strobus L. In Vitro Cell. Dev. Biol. Plant 36:279–286; 2000.CrossRefGoogle Scholar
  18. Klimaszewska, K.; Smith, D. R. Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiol. Plant. 100:949–957; 1997.CrossRefGoogle Scholar
  19. Lelu, M. A.; Bastien, C.; Drugeault, A.; Gouez, M. L.; Klimaszewska, K. Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with and without growth regulators. Physiol. Plant. 105:719–728; 1999.CrossRefGoogle Scholar
  20. Li, X. Y.; Huang, F. H.; Gbur E. E., Jr. Effect of basal medium, growth regulators and Phytagel concentration on initiation of embryogenic cultures from immature zygotic embryos of loblolly pine (Pinus taeda L.). Plant Cell Rep. 17:298–301; 1998.CrossRefGoogle Scholar
  21. Litvay, J. D.; Verma, D. C.; Johnson, M. A. Influence of a loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep. 4:325–328; 1985.CrossRefGoogle Scholar
  22. Miller, L. R.; Murashige, T. Tissue culture propagation of tropical foliage plants. J. Tiss. Cult. Methods 12:797–813; 1976.Google Scholar
  23. Nagmani, R.; Bonga, J. M. Embryogenesis in subcultured callus of Larix decidua. Can. J. For. Res. 15:1088–1091; 1985.Google Scholar
  24. Nagmani, R.; Diner, A. M.; Sharma, G. C. Somatic embryogenesis in longleaf pine (Pinus palustris). Can. J. For. Res. 23:873–876; 1993.Google Scholar
  25. Park, Y. S.; Bonga, J. M.; Cameron, S. I.; Barrett, J. D.; Forbes, K.; DeVerno, L.; Klimaszewska, K. Somatic embryogenesis in jack pine (Pinus banksiana Lamb). In: Jain, M. S.; Gupta, P. K.; Newton, R. J., eds. Somatic embryogenesis in woody plants, vol. 4 Dordrecht: Kluwer Academic Publishers; 1999:491–504.Google Scholar
  26. Park, Y. S.; Pond, S. E.; Bonga, J. M. Initiation of somatic embryogenesis in white spruce (Picea glauca): genetic control, culture treatment effects, and implication for tree breeding. Theor. Appl. Genet. 86:427–436; 1993.CrossRefGoogle Scholar
  27. Percy, R.; Klimaszewska, K.; Cyr, D. R. Evaluation of somatic embryogenesis for clonal propagation of western white pine. Can. J. For. Res. 30:1867–1876; 2000.CrossRefGoogle Scholar
  28. Preece, J. E.; Zhao, J.; Kung, F. H. Callus production and somatic embryogenesis from white ash (Fraxinus americana L.). Hosrt Science 24:377–380; 1989.Google Scholar
  29. Ribnicky, D. M.; Ilic, N.; Cohen, J.; Cooke, T. J. The effects of exogenous auxins on endogenous indole-3-acetic acid metabolism. The implications for carrot somatic embryogemesis. Plant Physiol. 112:549–558; 1996.PubMedGoogle Scholar
  30. Salajova, T.; Salaj, J.; Kormutak, A. Initiation of embryogenic tissues and plantlet regeneration from somatic embryos of Pinus nigra Arn. Plant Sci. 145:33–40; 1999.CrossRefGoogle Scholar
  31. Squillace, A. E. Average genetic corelations among offsping from openpollinated forest trees. Silvae Genet. 23:149–156; 1974.Google Scholar
  32. Tuskan, G. A.; Sargent, W. A.; Rensema, T.; Walla, J. A. Influence of plant growth regulators, basal medial and carbohydrate levels on the in vitro development of Pinus ponderosa (Dougl. ex Law.) cotyledon explants. Plant Cell Tiss. Organ Cult. 20:47–52; 1990.CrossRefGoogle Scholar
  33. Verhagen, S. A.; Wann, S. R. Norway spruce somatic embryogenesis: high frequency initiation from light-cultured mature embryos. Plant Cell Tiss. Organ Cult. 16:103–111; 1989.CrossRefGoogle Scholar
  34. von Aderkas, P.; Bonga, J. M.; Klimaszewska, K.; Owens, J. N. Comparison of larch embryogeny in vitro and in vivo. In: Ahuja, M. R., ed. Woody plant biotechnology. New York: Plenum Press; 1991:139–155.Google Scholar

Copyright information

© Society for In Vitro Biology 2001

Authors and Affiliations

  • Krystyna Klimaszewska
    • 1
  • Yill-Sung Park
    • 2
  • Cathy Overton
    • 1
  • Ian Maceacheron
    • 2
  • Jan M. Bonga
    • 2
  1. 1.Natural Resources CanadaCanadian Forest Service-Laurentian Forestry CentreSainte-FoyCanada
  2. 2.Natural Resources CanadaCanadian Forest Service-Atlantic Forestry CentreFrederictonCanada

Personalised recommendations