Advertisement

Organogenesis and somatic embryogenesis from callus cultures in Muscari armeniacum Leichtl. ex Bak.

  • Sakae Suzuki
  • Masaru NakanoEmail author
Article

Summary

Establishment of fast-growing, highly regenerable callus cultures was examined in Muscari armeniacum Leichtl. ex Bak. in order to develop an efficient genetic transformation system. High-frequency callus formation was obtained from leaf explants of cv. Blue Pearl on media containing 2,4-dichlorophenoxyacetic acid (2,4-D), α-naphthaleneacetic acid (NAA) or 4-amino-3,5,6-trichloropicolinic acid (picloram, PIC). Fast-growing, yellowish nodular callus lines and white friable callus lines containing a few somatic embryos were established on initiation medium supplemented with 4.5 μM 2,4-D and with 54 μM NAA, respectively. The yellowish nodular calluses vigorously produced shoot buds after transfer to media containing 0.44–44 μM 6-benzyladenine (BA), whereas the white friable calluses produced numerous somatic embryos upon transfer to plant growth regulator-free (PGR-F) medium. Histological observation of shoot buds and somatic embryos indicated that the former consisted of an apparent shoot meristem and several leaf primordia, and the latter had two distinct meristematic regions, corresponding to shoot and root meristems. Both shoot buds and somatic embryos developed into complete plantlets on PGR-F medium. Regenerated plants showed no observable morphological alterations. High proliferation and regeneration ability of these calluses, were maintained for over 2 yr.

Key words

callus culture Muscari armeniacum organogenesis plant regeneration somatic embryogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bancroft, J. D.; Cook, H. C. An introduction to histochemical techniques. New York, Longman; 1967.Google Scholar
  2. Barwale, U. B.; Kerns, H. R.; Widholm, J. M. Plant regeneration from callus cultures of several, soybean genotypes, via embryogenesis and organogenesis. Planta 167:473–483; 1986.CrossRefGoogle Scholar
  3. Buiteveld, J.; Fransz, P. F.; Creemers-Molenaar, J. Induction and characterization of embryogenic callus types for the initiation, of suspension cultures of leek (Allium ampeloprasum L.). Plant Sci. 100:195–202; 1994.CrossRefGoogle Scholar
  4. Delbreil, B.; Guerche, P.; Jullien, M. Agrobacterium-mediated transformation of Asparagus officinalis L. long-term embryogenic callus and regeneration of transgenic plants. Plant Cell Rep. 12:129–132; 1993.CrossRefGoogle Scholar
  5. Eapen, S.; George, L. Somatic embryogenesis in peanut: influence of growth regulators and sugars. Plant Cell Tiss. Organ Cult. 35:151–156; 1993.CrossRefGoogle Scholar
  6. Famelaer, I.; Ennik, E.; Eikelboom, W.; van Tuyl, J. M.; Creemers-Molenaar, J. The initiation of callus and regeneration from callus of Tulipa gesneriana. Plant Cell Tiss. Organ Cult. 47:51–58; 1996.CrossRefGoogle Scholar
  7. Godo, T.; Kobayashi, K.; Tagami, T.; Matsui, T.; Kida, T. In vitro propagation utilizing suspension cultures of meristematic nodular cell clumps and chromosome stability of Lilium×formolongi hort. Sci. Hort. 72:193–202; 1998.CrossRefGoogle Scholar
  8. Hong, W.; Debergh, P. Somatic embryogenesis, and plant regeneration in garden leek. Plant Cell Tiss Organ Cult. 43:21–28; 1995.CrossRefGoogle Scholar
  9. Kim, J. W.; Soh, W. Y. Plant regeneration through somatic embryogenesis from suspension cultures of Allium fistulosum L. Plant Sci. 114:215–220; 1996.CrossRefGoogle Scholar
  10. Krikorian, A. D.; Kann, R. P. Plantlet production from morphogenetically competent cell suspension of daylily. Ann. Bot. 47:679–686; 1981.Google Scholar
  11. Kromer, K. The effect of light conditions on regeneration and level of endogenous growth regulators in Muscari racemosum L Mill. bulb scale section cultured in vitro. Acta Hort. 251:173–181; 1989.Google Scholar
  12. Kunitake, H.; Mii, M. Somatic embryogenesis and its application for breeding and micropropagation in asparagus (Asparagus officinalis L.). Plant Biotechnol. 15:51–61; 1998.Google Scholar
  13. Matsuoka, H.; Hinata, K. NAA-induced organogenesis and embryogenesis in hypocotyl callus of Solanum melongena. J. Exp. Bot. 30:363–370; 1979.CrossRefGoogle Scholar
  14. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 15:473–497; 1962.CrossRefGoogle Scholar
  15. Nakano, M.; Sakakibara, T.; Suzuki, S.; Saito, H. Decrease in the regeneration potential of long-term cell suspension cultures of Lilium formosanum Wallace and its restoration by the auxin transport inhibitor, 2,3,5-triiodobenzoic acid. Plant Sci. 158:129–137; 2000.PubMedCrossRefGoogle Scholar
  16. Özcan, S.; Barghchi, M.; Firek, S.; Draper, J. Efficient adventitious shoot regeneration and somatic embryogenesis in pea. Plant Cell Tiss. Organ Cult. 34:271–277; 1993.CrossRefGoogle Scholar
  17. Priyadarshi, S.; Sen, S. A revised scheme for mass propagation of Easter Lily. Plant Cell Tiss. Organ Cult. 30:193–197; 1992.CrossRefGoogle Scholar
  18. Rajasekaran, S.; Mullins, M. G.; Nair, Y. Flower formation in vitro by hypocotyl explants of cucumber (Cucumis sativus L.). Ann. Bot. 52:417–420; 1983.Google Scholar
  19. Supaibulwatana, K.; Mii, M. Organogenesis and somatic embryogenesis from young flower buds Agapanthus africanus Hoffmanns Plant Biotechnol. 14:23–28; 1997.Google Scholar
  20. Tabei, Y.; Kanno, T.; Nishino, T. Regeneration of organogenesis and somatic embryogenesis by auxin in melon Cucumis melo. Plant Cell Rep. 10:225–229; 1991.CrossRefGoogle Scholar
  21. Tribulato, A.; Remotti, P. C.; Löffler, H. J. M.; van Tuyl, J. M. Somatic embryogenesis and plant regeneration in Lilium longiflorum, Thunb. Plant Cell Rep. 17:113–118; 1997.CrossRefGoogle Scholar
  22. van der Valk, P.; Scholten, O. E.; Verstappen F.; Jansen, R. C.; Dons, J. J. M.. High frequency somatic embryogenesis and plant regeneration from zygotic embryo-derived callus cultures of three Allium species. Plant Cell Tiss. Organ Cult. 30:181–191; 1992.CrossRefGoogle Scholar
  23. Vasil, I. K.; Vasil, V. Advances in cereal protoplast research. Physiol. Plant. 85:279–283; 1992.CrossRefGoogle Scholar
  24. Wickremesinhe, E. R. M.; Holcomb, E. J.; Arteca, R. N. A practical method for the production of flowering Easter lilies, from callus cultures. Sci. Hort. 60:143–152; 1994.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2001

Authors and Affiliations

  1. 1.Faculty of AgricultureNiigata UniversityNiigataJapan

Personalised recommendations