The investigation of optimal bombardment parameters for transient and stable transgene expression in Sorghum



This report outlines the development of optimized particle inflow gun (PIG) parameters for producing transgenic sorghum (Sorghum bicolor (L.) Moench). Both transient and stable expression were examined when determining these parameters. The uidA reporter gene (GUS) encoding β-glucuronidase was used in transient experiments and the green fluorescent protein (GFP) used to monitor stable expression. Initially, optimization was conducted using leaf segments, as the generation of sorghum callus in sufficiently large quantities is time-consuming. Following leaf optimization, experiments were conducted using callus, identifying a high similarity between the two tissue types (r s=0.83). High levels of GUS expression were observed in both leaf and callus material when most distant from the DNA expulsion point, and using a pressure greater than 1800 kPa. A higher level of expression was also observed when the aperture of the helium inlet valve was constricted. Using the optimized conditions (pressure of 2200 kPa, distance to target tissue of 15 cm from the expulsion point, and the aperture of the helium inlet valve at one full turn), three promoters (Ubiquitin, Actinl and CaMV 35S) were evaluated over a 72-h period using GUS as the reporter gene. A significantly higher number of GUS foci were counted with the Ubiquitin construct over this period, compared to the Actinl and CaMV 35S constructs. Stable callus sectors (on 2 mg 1−1 bialaphos) with GFP expression were visualized for as long as 6 wk post-bombardment. Using this optimized protocol, several plants were regenerated after having been bombarded with the pAHC20 construct (containing the bar gene), with molecular evidence confirming integration.

Key words

transformation GUS green fluorescent protein particle inflow gun (PIG) 


  1. Bower, R.; Birch, R. G. Transgenic sugarcane plants via microprojectile bombardment. Plant J. 2:409–416; 1992.CrossRefGoogle Scholar
  2. Bower, R.; Elliott, A. R.; Potier, B. A. M.; Birch, R. G. High-efficiency, microprojectile-mediated contransformation of sugarcane, using visible or selectable markers. Mol. Breed. 2:239–249; 1996.CrossRefGoogle Scholar
  3. Casas, A. M.; Kononowicz, A. K.; Haan, T. G.; Zhang, L. Y.; Tomes, D. T.; Bressan, R. A.; Hasegawa, P. M. Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell. Dev. Biol. Plant 33:92–100; 1997.Google Scholar
  4. Casas, A. M.; Kononowicz, A. K.; Zehr, U. B.; Tomes, D. T.; Axtell, J. D.; Butler, L. G.; Bressan, R. A.; Hasegawa, P. M., Transgenic sorghum plants via microprojectile bombardment. Proc. Natl Acad. Sci. USA 90:11212–11216; 1993.PubMedCrossRefGoogle Scholar
  5. Chiu, W. L.; Niwa, Y.; Zeng, W.; Hirano, T.; Kobayashi, H.; Sheen, J. Engineered GFP as a vital reporter in plants. Curr. Biol. 6:325–330; 1996.PubMedCrossRefGoogle Scholar
  6. Chowdhury, M. K. U.; Parveez, G. K. A.; Saleh, N. M. Evaluation of five promoters for use in transformation of oil palm (Elaeis guineensis Jacq.). Plant Cell Rep. 16:277–281; 1997.Google Scholar
  7. Christensen, A. H.; Quail, P. H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 5:213–218; 1996.PubMedCrossRefGoogle Scholar
  8. Christou, P.; Ford, T. L.; Kofron, M. Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9:957–962; 1991.CrossRefGoogle Scholar
  9. Cornejo, M. J.; Luth, D.; Blankenship, K. M.; Anderson, O. D.; Blechl, A. E. Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol. Biol. 23:567–581; 1993.PubMedCrossRefGoogle Scholar
  10. Daniell, H. Transformation and foreign gene expression in plants mediated by microprojectile bombardment. In: Tuan, R. S. ed. Methods in molecular biology: recombinant gene expression protocols. New Jersey, Humana Press; 1997:463–489.CrossRefGoogle Scholar
  11. De Block, M.; Botterman, J.; Vandewiele, M.; Dockx, J.; Thoen, C.; Gossele, V.; Movva, N. R.; Thompson, C.; Van Montagu, M.; Leemans, J. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6:2513–2518; 1987.PubMedGoogle Scholar
  12. Dennehey, B. K.; Peterson, W. L.; Ford-Santino, C.; Pajeau, M.; Armstrong, C. L. Comparison of selective agents for use with the selectable marker gene bar in maize transformation. Plant Cell Tiss. Organ. Cult. 36:1–7; 1994.CrossRefGoogle Scholar
  13. Ellis, J. G.; Llewellyn, D. J.; Dennis, E. S.; Peacock, W. J. Maize Adh1 promoter sequences control anaerobic regulation: addition of upstream promoter elements from constitutive genes is necessary for expression in tobacco. EMBO J. 6:11–16; 1987.PubMedGoogle Scholar
  14. Finer, J. J.; Vain, P.; Jones, M. W.; McMullen, M. D. Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep. 11:323–328; 1992.CrossRefGoogle Scholar
  15. Franks, T.; Birch, R. G. Gene transfer into intact sugarcane cells using microprojectile bombardment. Aust. J. Plant Physiol. 18:471–480; 1991.CrossRefGoogle Scholar
  16. Gamborg, O. L.; Miller, R. A.; Ojina, K., Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158; 1968.PubMedCrossRefGoogle Scholar
  17. Gordon-Kamm, W. J.; Spencer, T. M.; Mangano, M. L.; Adams, T. R.; Daines, R. J.; Start, W. G.; O'Brien, J. V.; Chambers, S. A.; Adams, W. R. J.; Willetts, N. G.; Rice, T. B.; Mackey, C. J.; Krueger, R. W.; Kausch, A. P.; Lemaux, P. G. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618; 1990.PubMedCrossRefGoogle Scholar
  18. Haseloff, J.; Amos, B. GFP in plants, TIG 11:328–329; 1995.PubMedGoogle Scholar
  19. Haseloff, J.; Siemering, K. R.; Prasher, D. C.; Hodge, S. Removal of a cruptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl Acad. Sci. USA 94:2122–2127; 1997.PubMedCrossRefGoogle Scholar
  20. He, D. G.; Mouradov, A.; Yang, Y. M.; Mouradova, E.; Scott, K. J. Transformation of wheat (Triticum aestivum L.) through electroporation of protoplasts. Plant Cell Rep. 14:192–196; 1994.CrossRefGoogle Scholar
  21. Hiei, Y.; Ohta, S.; Komari, T.; Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6:271–282; 1994.PubMedCrossRefGoogle Scholar
  22. Hill, M.; Launis, K.; Bowman, C.; McPherson, K.; Dawson, J.; Watkins, J.; Koziel, M.; Wright, M. S. Biolistic introduction of a synthetic Bt gene into elite maize. Euphytica 85:119–123; 1995.CrossRefGoogle Scholar
  23. Jefferson, R. A.; Kavanagh, T. A.; Bevan, M. W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3908; 1987.PubMedGoogle Scholar
  24. Kikkert, J. R. The Biolistic® PDS-1000/He device. Plant Cell Tiss. Organ. Cult. 33:221–226; 1993.CrossRefGoogle Scholar
  25. Knutzon, D. S.; Thompson, G. A.; Radke, S. E.; Johnson, W. B.; Knauf, V. C.; Kridl, J. C. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc. Natl Acad. Sci. USA 89:2624–2628; 1992.PubMedCrossRefGoogle Scholar
  26. Köhler, R. H.; Cao, J.; Zipfel, W. R.; Webb, W. W.; Hanson, M. R. Exchange of protein molecules through connection between higher plant plastids. Science 276:2039–2042; 1997a.PubMedCrossRefGoogle Scholar
  27. Köhler, R. H.; Zipfel, W. R.; Webb, W. W.; Hanson, M. R. The green fluorescent protein as a marker to visualise plant mitochondria in vivo. Plant J. 11:613–621; 1997b.PubMedCrossRefGoogle Scholar
  28. Kononowicz, A. K.; Casas, A. M.; Tomes, D. T.; Bressan, R. A.; Hasegawa, P.M. New vistas are opened for sorghum improvement by genetic transformation. Afr. Crop Sci. J. 3:171–180; 1995.Google Scholar
  29. Koziel, M.; Beland, G.; Bowman, C.; Carozzi, N.; Crenshaw, B.; Crossland, L.; Dawson, J.; Desai, N.; Hill, M.; Kadwell, S.; Launis, K.: Lewis, K.; Maddox, D.; McPherson, K.; Meghji, M.; Merlin, E.; Rhodes, R.; Warren, G.; Wright, M.; Evola, S. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11:194–200; 1993.CrossRefGoogle Scholar
  30. Last, D. I.; Brettell, R. I. S.; Chamberlain, D. A.; Chaudhury, A. M.; Larkin, P. J.; Marsh, E. L.; Peacock, W. J.; Dennis, E. S. pEmu: an improved promoter for gene expression in cereal cells. Theor. Appl. Genet. 18:581–588; 1991.Google Scholar
  31. Lomonossof, G. P. Pathogen-derived resistance to plant viruses. Annu. Rev. Phytopath. 33:323–343; 1995.CrossRefGoogle Scholar
  32. McElroy, D.; Blowers, A. D.; Jenes, B.; Wu, R. Construction of expression vectors based on the rice actin 1 (Actl) 5′ region for use in monocot transformation. Mol. Gen. Genet. 231:150–160; 1991.PubMedCrossRefGoogle Scholar
  33. Meeusen, R. L.; Warren, G. Insect control with genetically engineered crops. Annu. Rev. Entomol. 34:373–381; 1989.CrossRefGoogle Scholar
  34. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–479; 1962.CrossRefGoogle Scholar
  35. Odell, J. T.; Nagy, F.; Chua, N-H. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812; 1985.PubMedCrossRefGoogle Scholar
  36. Rathus, C.; Godwin, I. D. Transgenic sorghum (Sorghum bicolor). In: Bajaj, Y. P. S., ed. Transgenic crops I—biotechnology in agriculture and forestry, vol. 46, Berlin: Springer-Verlag; 1999; 76–83.Google Scholar
  37. Ritala, A.; Aspegren, K.; Kurten, U.; Salmenkallio-Marttila, M.; Mannonen, L.; Hannus, R.; Kauppinen, V.; Teeri, T. H.; Enari, T. M. Fertile transgenic barley by particle bombardment of immature embryos. Plant Mol. Biol. 24:317–325; 1994.PubMedCrossRefGoogle Scholar
  38. Rogers, S. O.; Bendich, A. J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5:69–76; 1985.CrossRefGoogle Scholar
  39. Ross, A. H.; Manners, J. M.; Birch, R. C. Embryogenic callus production, plant regeneration and transient gene expression following particle bombardment in the pasture grass, Cenchrus ciliaris. Aust. J. Bot. 43:192–199; 1995.CrossRefGoogle Scholar
  40. Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning, a laboratory manual. 2nd edn. New York Cold Spring Harbor Laboratory Press; 1989.Google Scholar
  41. Schenk, P. M.; Elliot, A. R.; Manners, J. M. Assessment of transient gene expression in plant tissues using the green fluorescent protein as a reference. Plant Mol. Biol. Rep. 16:313–322; 1998.CrossRefGoogle Scholar
  42. Vain, P.; Keen, N.; Murillo, J.; Rathus, C.; Nemes, C.; Finer, J. J. Development of the Particle Inflow Gun. Plant Cell Tiss. Organ. Cult. 33:237–246; 1993.CrossRefGoogle Scholar
  43. Vasil, V.; Castillo, A. M.; Fromm, M. E.; Vasil, I. K. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10:667–674; 1992.CrossRefGoogle Scholar
  44. Wan, Y.; Lemaux, P. G. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104:37–48; 1994.PubMedGoogle Scholar
  45. Zhu, H.; Muthukrishnan, S.; Krishnaveni, S.; Wilde, G.; Jeoung, J-M.; Liang, G. H. Biolistic transformation of sorghum using a rice chitinase gene. J. Genet. Breed. 52:243–252; 1998.Google Scholar

Copyright information

© Society for In Vitro Biology 2001

Authors and Affiliations

  1. 1.School of Land and Food SciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations