Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Special symposium: In vitro plant recalcitrance do free radicals have a role in plant tissue culture recalcitrance?


Free radicals have an important role in the metabolism and development of aerobic organisms; however, their uncontrolled production leads to oxidative stress. This paper explores the possibility that free radical mediated stress has a role in tissue culture recalcitrance. In the context of this paper, recalcitrance is considered to be the inabilit of plant tissue cultures to respond to culture manipulations; in its broadest terms, this study also concerns the time-related decline (i.e. in vitro aging) and loss of morphogenetic competence and totipotent capacity. Studies on a diverse range of in vitro plant systems have shown that tissue cultures produce free radicals, lipid peroxides and toxic, aldehydic lipid peroxidation products. Levels of these compounds vary in response to different tissue culture manipulations, but their production is enhanced during dedifferentation and antioxidant profiles also vary throughout different phases of culture. A hypothesis is presented which suggests that tissue culture manipulations cause major metabolic and developmental changes, some of which may predispose in vitro cultures to increased free radical formation. If antioxidant protection is compromised, oxidative stress ensues and free radicals and their reaction products react with macromolecules such as DNA, proteins and enzymes, causing cellular dysfuction and as a result, the cultures become recalcitrant.

This is a preview of subscription content, log in to check access.


  1. Adams, L. K.; Benson, E. E.; Staines, H. J.; Bremner, D. H.; Millam, S.; Deighton, N.: Effects of lipid peroxidation products 4-hydroxy-2-nonenal and malondialdehyde on the proliferation and morphogenetic development of in vitro plant cells. J. Plant Physiol. 155:376–386; 1999.

  2. Badiani, M.; D'Annibale, A.; Paolacci, A. R.; Fusari, A.. Modifying the expression of antioxidant systems in transgenic plants. Agro-Food Ind. Hi-Tech. March–April: 21–26; 1996.

  3. Bailey, E.; Deighton, N.; Clulow, S. A.; Goodman, B. A.; Benson E. E.: Changes in free radical profiles during the callogenesis of responsive and recalcitrant potato genotypes. Proc. R. Soc. Edinburgh, Sect. B 102:243–246; 1994.

  4. Benson, E. E.: Free radical damage in stored plant germplasm. Rome, Italy: IBPGR; 1990.

  5. Benson, E. E.. Free radicals in stressed and ageing plant tissue cultures. In: Durzan, D. J.; Rodriguez, R.; Sanchez Tamés, R., eds. Plant aging: basic and applied approaches. New York: Plenum Press: 1991; 269–276.

  6. Benson, E. E.; Lynch, P. T.; Jones, J., The detection of lipid peroxidation products in cryoprotected and frozen rice cells: consequences for post-thaw survival. Plant. Sci. 85: 107–114; 1992a.

  7. Benson, E. E.; Lynch, P. T.; Jones, J.: Variation in free radical-mediated damage in rice cell suspensions with different embryogenic potentials. Planta 188:296–305; 1992b.

  8. Benson, E. E.; Magill, W. J.; Deighton, N.; Bremner, D. H.; Adams, L. K. Cellular mechanisms in vitro: studies of free radical-generated lipid peroxidation products in plant tissue culture systems. In Vitro Cell. Dev. Biol.-Plant 33:47A; 1997a.

  9. Benson, E. E.; Magill, W. J.; Bremner, D. H.. Free radical processes in plant tissue cultures: implications for plant biotechnology programmes. Phyton 37:31–38; 1997b.

  10. Benson, E. E.; Roubelakis-Angelakis, K. A.. Fluorescent lipid peroxidation products and antioxidant enzymes in tissue cultures of Vitis vinifera L. Plant Sci. 84:83–90; 1992.

  11. Benson, E. E.; Roubelakis-Angelakis, K. A., Oxidative stress in recalcitrant tissue cultures of grapevine. Free Rad. Biol. Med. 16:355–362; 1994.

  12. Benson, E. E.; Withers, L. A. Gas chromatographic analysis of volatile hydrocarbon production by cryopreserved plant tissue cultures: A non-destructive method for assessing stability. Cryo-Lett. 8:35–46; 1987.

  13. In: Bergmeyer, Y.; Grassle, M., eds. Methods of enzymatic analysis. 3 Weinheim, Germany: Verlag Chemie; 1983.

  14. Bisbis, B.; Billard, J. P.; Huault, C.; Kevers, C.; Le Dily, F.; Gaspar, Th. Biosynthesis of 5 aminolevulinic acid via the Shemin pathway in green sugar beet callus. Biol. Plant 40:493–497; 1997/1998.

  15. Bisbis, B.; Kevers, C.; Penel, C.; Greppin, H.; Gaspar, Th., Biosynthesis of tetrapyrrole-containing compounds including peroxidases in nonchlorophyllous fully habituated sugarbeet callus via the unique shemin pathway. Plant Peroxidase Newsl. 11:19–26; 1998.

  16. Bremner, D. H.; Magill, W. J.; Benson, E. E.; An evaluation of analytical methods for the detection of secondary oxidation products in dedifferentiated plant cultures. Phyton 37:39–44; 1997.

  17. Burdon, R. H.; Gill, V.; Rice-Evans, C.; Oxidative stress and tumour cell proliferation. Free Rad. Res. Commun. 1:65–76; 1990.

  18. Deighton, N.; Magill W. J.; Bremner, D. H.; Benson, E. E.. Malondialdehyde and 4-hydroxy-2-nonenal in plant tissue cultures: LC-MS determination of 2,4-dinitrophenylhydrazone derivatives. Free Rad. Res. 27:255–265; 1997.

  19. Dizdaroglu, M.. Characterisation of free radical-induced damage to DNA by the combined use of enzymatic hydrolysis and gas chromatographymass spectroscopy. J. Chromatogr. 367:357–366; 1986.

  20. Drotar, A.; Phelps P.; Fall, R.; Evidence for glutathione peroxidase activities in cultured plant cells. Plant Sci. 42:35–40; 1985.

  21. Earnshaw, B. A.; Johnson, M. A.. The effect of glutathione on development in wild carrot cell suspension cultures. Biochem. Biophys. Res. Commun. 133:988–993; 1985.

  22. Esterbauer, H.; Cheeseman, K. H. Determination of aldehydic lipid peroxidation products: malondialdehyde and 4-hydroxyalkenal. Methods Enzymol. 186:407–421; 1990.

  23. Esterbauer, H.; Zollner, H.; Methods for the determination of aldehydic lipid peroxidation products. Free Rad. Biol. Med. 7:197–203; 1989.

  24. Esterbauer, H.; Zollner, H.; Schaur, R. J.. Hydroxyalkenals: cytotoxic products of lipid peroxidation. ISI Atlas Sci. Biochem. 1:311–317; 1988.

  25. Fantel, A. G.; Mackler, B.; Stamps, L. D.; Tran, T. T.; Person, R. E.; Reactive oxygen species and DNA oxidation in fetal rat tissues. Free Rad. Biol. Med. 25:95–103; 1998.

  26. Fleck, R. A., Benson, E. E.; Bremner, D. H.; Day, J. G.; Studies of freeradical mediated cryoinjury in the unicellular green alga Euglena gracillis using a non-destructive hydroxyl radical assay: a novel approach for developing protistan cryopreservation strategies. Free Rad. Res. 32:157–170; 2000.

  27. Fleck, R. A.; Day, J. G.; Clarke, K. J.; Benson, E. E.. Elucidation of the metabolic and structural basis for the cryopreservation of recalcitrance in Vaucheria sessillis Cryo-Lett. 20:271–282; 1999.

  28. Fraga, C. G.; Leobovitz, B. E.; Tappel, A. L. Lipid peroxidation measured as thiobarbituric acid reactive substances in tissue slices: characterisation and comparison of homogenates and microsomes. Free Rad. Biol. Med. 4:155–161; 1988.

  29. Frankel, E. N. Biological significance of secondary lipid peroxidation products. Free Rad. Res. Commun. 3:213–225; 1987.

  30. Garcia, F. G.; Einset, J. W.. Ethylene and ethane production in 2,4-D and salt treated tobacco tissue cultures. Anal. Bot. 51:287–295; 1983.

  31. Gaspar, Th.; Kevers, C.; Bisbis, B.; Franck, Th. Crevecouer, M.; Greppin, H.; Dommes, J.. Loss of plant oganogenic totipotency in the course of in vitro neoplastic progression. In Vitro Cell. Dev. Biol.-Plant 36:171–181; 2000.

  32. Goodman, B. A.; Deighton, N.; Glidewell, S. M.; Wood, C. B.; Pritchard H. W.; Benson, E. E. Do EPR spectra show the presence of a unique ubiquitous quinone-derived free radical that is associated with senescence in plants. Free Rad. Res. 23:187–200; 1995.

  33. Gude, H.; van der Plas, L. H. W. Endogenous ethylene formation and the development of the alternative pathway in potato tuber disks. Physiol. Plant 65:57–62; 1985.

  34. Gunse, B.; Elstner, E. F.; Formation of activated states of indoleacetic acid and cytokinins: an experimental approach to a hypothesis concerning signal transaction. J. Plant Physiol. 140:536–540; 1992.

  35. Harding, K.; Benson, E. E. Methods for the biochemical and molecular analysis of cryopreserved plant tissue cultures In: Grout, B. W. W. eds. Genetic preservation of plant cells in vitro. Berlin: Springer-Verlag; 1995; 113–169.

  36. Heath, R. L.; Packer, L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189–198; 1968.

  37. Hendry, G. A. F.; Crawford, R. M. M.. Oxygen and environmental stress in plants: an overview. Proc. R. Soc. Edinburgh. Sect. B 102:1–10; 1994.

  38. Janero, D. R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidative tissue injury. Free Rad. Biol. Med. 9:515–540; 1990.

  39. Jovanovic, S.; Clements, D.; MacLeod, K. Biomarkers of oxidative stress are significantly elevated in Down syndrome. Free Rad. Biol. Med. 25:1044–1048; 1998.

  40. Kapahi, P.; Boulton, M. E.; Kirkwood, T. B. L. Positive correlation between mammalian life span and cellular resistance to stress. Free Rad. Biol. Med. 26:495–500; 1999.

  41. Kikugawa, K. Fluorescent products derived from the reaction of primary amines and components in peroxidized lipids. Adv. Free Rad. Biol. Med. 2:389–417; 1986.

  42. Larson, R. A. The antioxidants of higher plants. Phytochemistry 27:969–978; 1988.

  43. Le Dily, F.; Huault, C.; Gaspar, Th.; Billard, J.-P.. Does altered nitrogen metabolism and H2O2 accumulation explain the vitrified status of fully habituated callus of Beta vulgaris (L)? Plant Cell Tiss. Org. Cult. 35:69–74; 1993.

  44. Leshem, Y. Y.; Plant senescence processes and free radicals. Fee Rad. Biol. Med. 5:39–49; 1988.

  45. Lunec, J.; Dormandy, T. L. Fluorescent lipid peroxidation products in synovial fluid. Clin. Sci. 56:53–59; 1979.

  46. Maitre, R. K.; Sen, S. P. Production of ethylene and ethane by callus tissues of Daucus carota L. in the presence of 2,4-disubstituted phenols. Plant Sci. 62:33–35; 1989.

  47. Marx, J. L. Oxygen free radicals linked to many diseases. Science 235:529–531; 1987.

  48. Mason, R. P.; Walter, M. F.; Mason P. E. Effect of oxidative stress on membrane structure: small angle X-ray diffraction analysis. Free Rad. Biol. Med. 23:419–425; 1997.

  49. McCown, B. H. Recalcitrance of woody and herbaceous perennial plants: dealing with genetic predeterminism. In Vitro Cell. Dev. Biol.-Plant 36:149–154; 2000.

  50. Mecocci, P.; Fano, G.; Fulle, S.; MacGarvey, U.; Shinobu, L.; Polidori, M. C.; Cherubini, A.; Vecchiet, J.; Senin, U.; Beal, M. F.. Age-dependent increases in oxidative damage to DNA, lipids and proteins in human skeletal muscle. Free Rad. Biol. Med 26:303–308; 1999.

  51. Mehdy, M. C. Update on signal transaction: Active oxygen species in plant defence against pathogens. Plant Physiol. 105:467–472; 1994.

  52. Munday, R. Toxicity of thiols and disulphides: involvement of free-radical species. Free Rad. Biol. Med. 7:659–673; 1989.

  53. Robertson, L.; Magill, W. J.; Benson, E. E.; Bremner, D. H.; Buultjens, T. E. J. Oxidative stress in the plant tissue culture environment. Biochem. Soc. Trans. 23:263S; 1995.

  54. Saran, M.; Bors, W. Oxygen radicals acting as chemical messengers: a hypothesis. Free Rad. Biol. Med. 7:213–220; 1989.

  55. Weber, G. F. The measurement of oxygen-derived free radicals and related substances in medicine. J. Chem. Clin. Biochem. 28:569–603; 1990.

  56. Wright, R. M.; McManaman, J. L.; Repine, J. E.. Alcohol-induced breast cancer: a proposed mechanism. Free Rad. Biol. Med. 26:348–354; 1999.

Download references

Author information

Correspondence to Erica E. Benson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benson, E.E. Special symposium: In vitro plant recalcitrance do free radicals have a role in plant tissue culture recalcitrance?. In Vitro Cell.Dev.Biol.-Plant 36, 163–170 (2000).

Download citation

Key words

  • recalcitrance
  • in vitro plants
  • oxidative stress
  • hydroxyalkenals
  • malondialdehyde
  • free radicals
  • antioxidants
  • morphogenesis