Advertisement

Genetic engineering for abiotic stress resistance in crop plants

  • Jingxian Zhang
  • Natalya Y. Klueva
  • Z. Wang
  • Ray Wu
  • Tuan-Hua David Ho
  • Henry T. NguyenEmail author
Article

Summary

Drought, extreme temperatures and high salinity are major limiting factors for plant growth and crop productivity. In their quest to feed the ever-increasing world population, agricultural scientists have to contend with these adverse environmental factors. If crops can be redesigned to better cope with abiotic stress, agricultural production can be increased dramatically. Recent advances in understanding crop abiotic stress resistance mechanisms and the advent of molecular genetic technology allow us to address these issues much more efficiently than in the past. This paper reviews the most significant achievements of the genetic engineering approach to improving plant abiotic stress resistance and discusses future prospects in transgenic research. Improved resistance to drought, salinity and extreme temperatures has been observed in transgenic plants that express/overexpress genes regulating osmolytes, specific proteins, antioxidants, ion homeostasis, transcription factors and membrane composition. Although the results are not always consistent, these studies collectively foretell a scenario where biotechnology will arm our future crops with new tactics to survive in hostile environments. Further experiments are needed to determine if the achieved increases in stress tolerance are applicable to agriculture.

Key words

abiotic stress resistance genetic engineering crop plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alia; Hayashi, H.; Sakamoto, A.; Murata, N. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J. 16:155–161; 1998.PubMedCrossRefGoogle Scholar
  2. Aono, M.; Saji, H.; Sakamoto, A.; Tanaka, K.; Kondo, N.; Tanaka, K. Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase. Plant Cell Physiol. 36:1687–1691; 1995.PubMedGoogle Scholar
  3. Apse, M. P.; Aharon, G. S.; Snedden, W. A.; Blumwald, E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport+ in Arabidopsis. Science 285:1256–1258; 1999.PubMedCrossRefGoogle Scholar
  4. Bajaj, S.; Targolli, J.; Liu, L.-F.; Ho, T.-H. D.; Wu, R. Transgenic approaches to increase dehydration-stress tolerance in plants. Mol. Breeding 5:493–503; 1999.CrossRefGoogle Scholar
  5. Bohnert, H. J.; Nelson, D. E.; Jensen, R. G. Adaptations to environmental stresses. Plant Cell 7:1099–1111; 1995.PubMedCrossRefGoogle Scholar
  6. Bohnert, H. J.; Jensen, R. G. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol. 14:89–97; 1996.CrossRefGoogle Scholar
  7. Bose, A.; Ghosh, E. Effect of heat stress on ribulose 1,5-bisphosphate carboxylase in rice. Phytochemistry 38:1115–1118; 1995.CrossRefGoogle Scholar
  8. Boyer, J. S. Plant productivity and environment. Science 218:443–448; 1982.CrossRefPubMedGoogle Scholar
  9. Bray, E. A. Plant responses to water deficit. Trends Plant Sci. 2:48–54; 1997.CrossRefGoogle Scholar
  10. Burke, J. J.; Oliver, M. J. Optimal thermal environments for plant metabolic processes (Cucumis sativus L.): light-harvesting chlorophyll a/b pigment-protein complex of photosystem II and seedling establishment in cucumber. Plant Physiol. 102:295–302; 1993.PubMedGoogle Scholar
  11. Chen, L.; Marmey, P.; Taylor, N. J.; Brizard, J. P.; Espinoza, C.; D'Cruz, P.; Huet, H.; Zhang, S.; de Kochko, A.; Beachy, R. N.; Fauquet, C. M. Expression and inheritance of multiple transgenes in rice plants. Nature Biotechnol. 16:1060–1064; 1998.CrossRefGoogle Scholar
  12. Close, T. Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiol. Plant 100:291–296; 1997.CrossRefGoogle Scholar
  13. Davidson, J. F.; Whyte, B.; Bissinger, P. H.; Schiestl, R. H. Oxidative stress is involved in heat induced cell death in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93:5116–5121; 1996.PubMedCrossRefGoogle Scholar
  14. Gan, S.; Amasino, R. M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988; 1995.PubMedCrossRefGoogle Scholar
  15. Gombos, Z.; Wada, H.; Murata, N. Unsaturation of fatty acids in membrane lipids enhances tolerance to the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition. Proc. Natl. Acad. Sci. USA 89:9959–9963; 1992.PubMedCrossRefGoogle Scholar
  16. Gombos, Z.; Wada, H.; Murata, N. The unsaturation of membrane lipids stabilizes photosynthesis against heat stress. Plant Physiol. 104:563–567; 1994.PubMedGoogle Scholar
  17. Grover, A.; Saji, C.; Sanan, N.; Griver, A. Taming abiotic stresses in plants through genetic engineering: current strategies and perspective. Plant Sci. 143:101–111; 1999.CrossRefGoogle Scholar
  18. Hare, P. D.; Cress, W. A.; van Staden, J. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21:535–553; 1998.CrossRefGoogle Scholar
  19. Imai, R.; Chang, L.; Ohta, A.; Bray, E. A.; Takagi, M. A lea-class gene of tomato confers salt and freezing tolerance when overexpressed in Saccharomyces cerevisiae. Gene 170:243–248; 1996.PubMedCrossRefGoogle Scholar
  20. Jaglo-Ottosen, K. R.; Gilmour, S. J.; Zarka, D. G.; Schabenberger, O.; Thomashow, M. F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106; 1998.PubMedCrossRefGoogle Scholar
  21. Kasuga, M.; Liu, Q.; Miura, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol. 17:287–291; 1999.CrossRefGoogle Scholar
  22. Klueva, N.; Zhang, J.; Nguyen, H.T. Molecular strategies for managing environmental stress. In: Chopra, V. L.; Singh, R. B.; Varma, A. eds. Crop productivity and sustainability—shaping the future. New Delhi, India: Oxford & IBH; 1998:501–524.Google Scholar
  23. Kodama, H.; Hamada, T.; Horiguchi, G.; Nishimura, M.; Iba, K. Genetic enhancement of cold tolerance by expression of a gene for chloroplast omega-3 fatty acid desaturase in transgenic tobacco. Plant Physiol. 105:601–605; 1994.PubMedGoogle Scholar
  24. Lee, J. H.; van Montagu M.; Verbruggen, N. A highly conserved kinase is an essential component for stress tolerance in yeast and plant cells. Proc. Natl. Acad. Sci. USA 96:5873–5877; 1999.PubMedCrossRefGoogle Scholar
  25. Lee, J. H.; Hubel, A.; Schoffl, F. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J. 8:603–612; 1995.PubMedCrossRefGoogle Scholar
  26. Lee, J. H.; Schoffl, F. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol. Gen. Genet. 252:11–19; 1996.PubMedCrossRefGoogle Scholar
  27. Lee, Y. R. J.; Nagao, R. T.; Key, J. L. A soybean 101 kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance. Plant Cell 6:1889–1897; 1994.PubMedCrossRefGoogle Scholar
  28. Liu, J.; Zhu, J. K. A calcium sensor homolog required for plant salt tolerance. Science 280:1943–1945; 1998.PubMedCrossRefGoogle Scholar
  29. McKersie, B. D.; Bowley, S. R.; Harjanto, E.; Leprince, O. Water deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 111:1177–1181; 1996.PubMedGoogle Scholar
  30. McKersie, B. D.; Bowley, S. R.; Jones, K. S. Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 119:839–847; 1999.PubMedCrossRefGoogle Scholar
  31. Moon, B. Y.; Higashi, S.-I.; Gombos, Z.; Murata, N. Unsaturation of membrane lipids of chloroplasts stabilized photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 92:6219–6223; 1995.PubMedCrossRefGoogle Scholar
  32. Murata, N.; Ishizaki-Nishizawa, O.; Higashi, S.; Hayashi, H.; Tasaka, Y.; Nishida, I. Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713; 1992.CrossRefGoogle Scholar
  33. Nedeva, T. S.; Savov, V. A.; Kujumdzieva-Savova, A. V.; Davidov, E. R. Screening of thermotolerant yeast as producers of superoxide dismutase. FEMS Microbiol. Lett. 107:49–52; 1993.PubMedCrossRefGoogle Scholar
  34. Nguyen, H. T.; Babu, B. C.; Blum, A. Breeding for drought resistance in rice: physiology and molecular genetics consideration. Crop Sci. 37:1426–1434; 1997.CrossRefGoogle Scholar
  35. Oliver, M. J.; Ferguson, D. L.; Burke, J. J. Interspecific gene transfer. Implications for broadening temperature characteristics of plant metabolic processes. Plant Physiol. 107:429–434; 1995.PubMedGoogle Scholar
  36. Osteryoung, K. W.; Pipes, B.; Wehmeyer, N.; Vierling, E. Studies of a chloroplast-localized small heat shock protein in Arabidopsis. In: Cherry, J. H., ed. Biochemical and cellular mechanisms of stress tolerance in plants, NATO ASI Series. Berlin: Springer-Verlag; 1994;97–113.Google Scholar
  37. Pardo, J. M.; Reddy, M. P.; Yang, S.; Maggio, A.; Huh, G. H.; Matsumoto, T.; Coca, M. A.; Paino-D'Urzo, M.; Koiwa, H.; Yun, D. J.; Watad, A. A.; Bressan, R. A.; Hasegawa, P. M. Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc. Natl. Acad. Sci. USA 95:9681–9686; 1998.PubMedCrossRefGoogle Scholar
  38. Purugganan, M. M.; Braam, J.; Fry, S. C. The Arabidopsis TCH4 xyloglucan endotransglucosylase. Plant Physiol. 115:181–190; 1999.CrossRefGoogle Scholar
  39. Roxas, V. P.; Smith, R. K.; Allen, E. R. Jr.; Allen, R. D.; Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotechnol. 15:988–991; 1997.CrossRefGoogle Scholar
  40. Sairam, R. K.; Deshmukh, P. S.; Shukla, D. S. Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. J. Agron. Crop Sci. 178:171–178; 1997.CrossRefGoogle Scholar
  41. Sakamoto, A.; Alia; Murata, N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol. Biol. 38:1011–1019; 1998.PubMedCrossRefGoogle Scholar
  42. Schirmer, E. C.; Lindquist, S.; Vierling, E. An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell 6:1899–1909; 1994.PubMedCrossRefGoogle Scholar
  43. Schoffl, F.; Rieping, M.; Baumann, G. Constitutive transcription of a soybean heat-shock gene by a cauliflower mosaic virus promoter in transgenic tobacco. Dev. Genet. 8:365–374; 1987.CrossRefGoogle Scholar
  44. Sen Gupta, A.; Heinen, J. L.; Holaday, A. S.; Burke, J. J.; Allen, R. D. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 90:1629–1633; 1993.CrossRefGoogle Scholar
  45. Shen, Q.; Zhang, P.; Ho, T. D. H. Modular nature of ABA response complexes: composite promoter units that are necessary and sufficient for ABA-induced gene expression in Barley. Plant Cell 7:1107–1119; 1996.CrossRefGoogle Scholar
  46. Smirnoff, N.; Bryant, J. A. DREB takes the stress out of growing up. Science 17:229–230; 1999.Google Scholar
  47. Storozhenko, S.; De Pauw, P.; van Montagu, M.; Inze, D.; Kushnir, S. The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiol. 118:1005–1014; 1998.PubMedCrossRefGoogle Scholar
  48. Su, J.; Shen, Q.; Ho, T.-H.D.; Wu, R. Dehydration-stress-regulated transgene expression in stably transformed rice plants. Plant Physiol. 117:913–922; 1998.PubMedCrossRefGoogle Scholar
  49. Tarczynski, M. C.; Jensen, R. G.; Bohnert, H. J. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510; 1993.CrossRefPubMedGoogle Scholar
  50. Tasaka, Y.; Gombos, Z.; Nishiyama, Y.; Mahanty, P.; Ohba, T.; Ohki, K.; Murata, N. Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration, and photosynthesis. EMBO J. 15:6416–6425; 1996.PubMedGoogle Scholar
  51. Thomashow, M. I. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol. 118:1–7; 1998.PubMedCrossRefGoogle Scholar
  52. Torsethaugen, G.; Pitcher, L. H.; Zilinskas, B. A.; Pell, E. J. Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. Plant Physiol. 114:529–537; 1997.PubMedGoogle Scholar
  53. Varkonyi, Z.; Zsoros, O.; Gombos, Z. The application of genetically manipulated cyanobacterial strains in the study of glycerolipid unsaturation of photosynthetic membranes in the tolerance of photosynthetic machinery to temperature stresses. J. Sci. Indust. Res. 55:658–668; 1996.Google Scholar
  54. Xu, D.; Duan, X.; Wang, B.; Hong, B.; Ho, T. D.; Wu, R. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110:249–257; 1996.PubMedGoogle Scholar
  55. Wells, D. R.; Tanguay, R. L.; Le, H.; Gallie, D. R. HSP101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status. Genes Dev. 12:3236–3251; 1998.PubMedGoogle Scholar
  56. Winicov, I.; Bastola, D. R. Transgenic overexpression of the transcription factor Alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiol. 120:473–480; 1999.PubMedCrossRefGoogle Scholar
  57. Wolter, F. P.; Schmidt, R.; Heinz, E. Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J. 11:4685–4692; 1992.PubMedGoogle Scholar
  58. Zhang, J.; Nguyen, H. T.; Blum, A. Genetic analysis of osmotic adjustment in crop plants. J. Exp. Bot. 50:291–302; 1999a.CrossRefGoogle Scholar
  59. Zhang, J.; Zheng, H. G.; Ali, M. L.; Tripathy, J. N.; Aarti, A.; Pathan, M. S.; Sarial, A. K.; Robin, S.; Nguyen, T. T.; Babu, R. C.; Nguyen, B. D.; Sarkarung, S.; Blum, A.; Nguyen, H. T. Progress on the molecular mapping of osmotic adjustment and root traits. In: O'Toole, J. C.; Ito, O.; Hardy, B. eds. Genetic improvement of rice for water-limited environments. Los Baños, Philippines: International Rice Research Institute; 1999b: 307–317.Google Scholar

Copyright information

© Society for In Vitro Biology 2000

Authors and Affiliations

  • Jingxian Zhang
    • 1
  • Natalya Y. Klueva
    • 1
  • Z. Wang
    • 2
  • Ray Wu
    • 2
  • Tuan-Hua David Ho
    • 3
  • Henry T. Nguyen
    • 1
    Email author
  1. 1.Plant Molecular Genetics Laboratory, Department of Plant and Soil ScienceTexas Tech UniversityLubbock
  2. 2.Section of Biochemistry, Molecular and Cell BiologyCornell UniversityIthaca
  3. 3.Department of BiologyWashington UniversitySt. Louis

Personalised recommendations