Thidiazuron stimulates shoot regeneration of sugarcane embryogenic callus

  • M. Gallo-MeagherEmail author
  • R. G. English
  • A. Abouzid


Efficient shoot regeneration of sugarcane (Saccharum spp. hybrid cv. CP84-1198) from embryogenic callus cultures has been obtained using thidiazuron (TDZ). Callus was placed on modified Murashige and Skoog (MS) medium containing 2.3 μM 2,4-dichlorophenoxyacetic acid (2,4-D), or 9.3 μM kinetin and 22.3 μM naphthaleneacetic acid (NAA) and compared with the same MS medium supplemented with 0.5, 1.0, 2.5, 5.0 or 10.0 μMTDZ, A11 TDZ treatments resulted in faster shoot regeneration than the kinetin/NAA treatment, and more shoot production than either the 2,4-D or kinetin/NAA treatments. Maximum response, as determined by total number of shoots (26 per explant) and number of shoots greater than 1 cm (4 per explant) 4 wk after initiation, was obtained with 1.0 μM TDZ. The shoots rooted efficiently on MS medium supplemented with 19.7 μM indole-3-butyric acid (IBA). These results indicate that TDZ effectively stimulates sugarcane plant regeneration from embryogenic callus, and may be suitable to use in genetic transformation studies to enhance regeneration of transgenic plants.

Key words

Saccharum tissue culture 2,4-dichlorophenoxyacetic acid kinetin naphthaleneacetic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahloowalia, B. S.; Maretzki, A. Plant regeneration via somatic embryogenesis in sugarcane. Plant Cell Rep. 2:21–25; 1983.Google Scholar
  2. Arencibia, A; Vázquez, R. I.; Prieto, D. L.; Téllez, P.; Carmona, E. R.; Coego, A.; Hernández, L.; De la Riva, G. A.; Selman-Housein, G. Transgenic sugarcane plants resistant to stem borer attack. Mol. Breed. 3:247–255; 1997.CrossRefGoogle Scholar
  3. Bates, S.; Preece, J. E.; Navarrete, N. E.; Van Sambeek, J. W.; Gaffney, G. R. Thidiazuron stimulates shoot organogenesis and somatic embryogenesis in white ash (Fraxinus americana L.). Plant Cell Tiss. Org. Cult. 31:21–29; 1992.Google Scholar
  4. Bower, R.; Birch, R. G. Transgenic sugarcane plants via microprojectile bombardment. Plant J. 2:409–416; 1992.CrossRefGoogle Scholar
  5. Enrìquez-Obregón, G. A.; Vázquez-Padrón, R. I.; Prieto-Samsonov, D. L.; De la Riva, G. A.; Selman-Housein, G. Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206:20–27; 1998.CrossRefGoogle Scholar
  6. Faure, O.; Diemer, F.; Moja, S.; Jullien, F. Mannitol and thidiazuron improve in vitro shoot regeneration from spearmint and peppermint leaf disks. Plant Cell Tiss. Org. Cult. 52:209–212; 1998.CrossRefGoogle Scholar
  7. Fitch, M. M. M.; Moore, P. H. Comparison of 2,4-D and picloram for selection of long-term totipotent green callus cultures of sugarcane. Plant Cell Tiss. Org. Cult. 20:157–163; 1990.Google Scholar
  8. Gallo-Meagher, M.; Irvine, J. E. Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop. Sci. 36:1367–1374; 1996.CrossRefGoogle Scholar
  9. Gupta, S. D.; Conger, B. V. In vitro differentiation of multiple shoot clumps from intact seedlings of switchgrass. In Vitro Cell. Dev. Biol.-Plant. 34:196–202; 1998.Google Scholar
  10. Heinz, D. J.; Mee, G. W. P. Plant differentiation from callus tissue of Saccharum species. Crop Sci. 9:346–348: 1969.CrossRefGoogle Scholar
  11. Heinz, D. J.; Krishnamurthi, M.; Nickell, L. G., Maretski, Cell, tissue and organ culture in sugarcane improvement. In: Reiner, J.; Bajaj, V. P. S., eds. Applied fundamental aspects of plant cell, tissue and organ culture. Berlin: Springer-Verlag; 1977;3–17.Google Scholar
  12. Heinz, D. J.; Mee, G. W. P. Morphological, cytogenetic, and enzymatic variation in Saccharum species hybrid clones derived from callus Tissue. Am. J. Bot. 58:257–262;1971.CrossRefGoogle Scholar
  13. Ho, W. J.; Vasil, I. K. Somatic embryogenesis in sugarcane (Saccharum officinarum L.). I. The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasma 118:169–180; 1983.CrossRefGoogle Scholar
  14. Huetteman, C. A.; Preece, J. E. Thidiazuron: A potent cytokinin for woody plant tissue culture. Plant Cell Tiss. Org. Cult. 33:105–119; 1993.CrossRefGoogle Scholar
  15. Ingelbrecht, I. L.; Irvine, J. E.; Mirkov, T. E. Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiol. 119:1187–1197; 1999.PubMedCrossRefGoogle Scholar
  16. Irvine, J. E.; Benda, G. T. A. Transmission of sugar cane diseases in plants derived by rapid regeneration from diseased leaf tissue. Sugar Cane. 6 (Nov/Dec):14–16; 1987.Google Scholar
  17. Irvine, J. E.; Benda, G. T. A.; Legendre, B. L.; Machado, Jr., G. R. The frequency of marker changes in sugarcane plants regenerated from callus culture. II. Evidence for vegetative and genetic transmission, epigenetic effects and chimeral disruption. Plant Cell Tiss. Org. Cult. 26:115–125; 1991.CrossRefGoogle Scholar
  18. Liu, M.-C.; Sugarcane. In: Sharp, W. H.; Evans, D.A.; Ammirato, P. V.; Yamada, Y., eds. Handbook of plant cell culture. Vol. 2. New York: MacMillan; 1984;572–605.Google Scholar
  19. Magioli, C.; Rocha, A. P. M.; de Oliveira, D. E.; Mansur, E.; Efficient shoot organogenesis of eggplant (Solanum melongena L.) induced by thidiazuron. Plant Cell Rep. 17:661–663; 1998.CrossRefGoogle Scholar
  20. Murthy, B. N. S.; Murch, S. J.; Saxena, P. K. Ihidiazuron: A potent regulator of in vitro plant morphogenesis. In Vitro Cell. Dev. Biol.-Plant. 34:267–275; 1998.Google Scholar
  21. Nickell, L. G., Crop improvement in sugarcane: studies using in vitro methods. Crop Sci. 17:717–719; 1977.CrossRefGoogle Scholar
  22. SAS Institute. SAS/STAT guide for personal computers, version 6.12 ed. Cany, NC: SAS Institute; 1996.Google Scholar
  23. Sauer, J. D. Historical geography of crop plants: a select roster. Boca Raton, FL: Lewis Publishers; 1993;236–250.Google Scholar

Copyright information

© Society for In Vitro Biology 2000

Authors and Affiliations

  1. 1.Agronomy DepartmentUniversity of FloridaGainesville

Personalised recommendations