Advertisement

Production of transgenic maize from bombarded type II callus: Effect of gold particle size and callus morphology on transformation efficiency

  • Bronwyn R. Frame
  • Hongyi Zhang
  • Suzy M. Cocciolone
  • Lyudmila V. Sidorenko
  • Charles R. Dietrich
  • Sue Ellen Pegg
  • Shifu Zhen
  • Patrick S. Schnable
  • Kan Wang
Article

Summary

Here we present a routine and efficient protocol for year-round production of fertile transgenic maize plants. Type II callus derived from maize Hi II immature zygotic embryos was transformed using the PDS 1000/He biolistic gun and selected on bialaphos. In an effort to improve the transformation protocol, the effects of gold particle size and callus morphology on transformation efficiency were investigated. Reducing gold particle size from 1.0 μm or 0.6 μm resulted in a significant increase in the rate of recovery of bialaphos-resistant clones from Type II callus. The average transformation efficiency of pre-embryogenic, early embryogenic and late embryogenic callus did not vary significantly. Rates of transformation, regeneration and fertility achieved for Type II callus are summarized and compared to those achieved for greenhouse- and field-derived immature zygotic embryos.

Key words

zygotic embryo regeneration biolistic Zea mays Hi II callus osmotic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, C.L.; Green, C. E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of l-proline. Planta 164:207–214; 1985.CrossRefGoogle Scholar
  2. Armstrong, C. L.; Green, C. E.; Phillips, R. L. Development and availability of germplasm with high Type II culture formation response. Maize Genetics Cooperative Newsletter 65:92–93; 1991.Google Scholar
  3. Armstrong, C. L.; Regeneration of plants from somatic cell cultures: applications for in vitro genetic manipulation. In: Freeling, M.; Walbot, V., eds. The maize handbook. New York: Springer-Verlag; 1994:663–671.Google Scholar
  4. Armstrong, C. L.; Parker, G. B.; Pershing, J. C.; Brown, S.; Sanders, P.; Duncan, D.; Stone, T.; Dean, D.; DeBoer, D.; Hart, J.; Howe, A.; Morrish, F.; Pajeau, M.; Petersen, W.; Reich, B.; Rodriguez, R.; Santino, C.; Sato, S.; Schuler, W.; Sims, S.; Stehling, S.; Tarochione, L.; Fromm, M. E. Field evaluation of European Corn Borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop. Sci. 35:550–557; 1995.CrossRefGoogle Scholar
  5. Brettschneider, R.; Becker, D.; Lorz, H., Effecient transformation of scutellar tissue of immature maize embryos. Theor. Appl. Genet. 94:737–748; 1997.CrossRefGoogle Scholar
  6. Chu, C. C.; Wang, C. C.; Sun, C. S.; Hsu, C.; Yin, K. C.; Chu, C. Y.; Bi, F. Y. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen source. Sci. Sin. 18:659–668; 1975.Google Scholar
  7. Christensen, A. H.; Quail, P. H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 5:213–218; 1996.PubMedCrossRefGoogle Scholar
  8. Dennehey, B. K.; Petersen, W. L.; Ford-Santino, C.; Pajeau, M.; Armstrong, C. L. Comparison of selective agents for use with the selectable marker gene bar in maize transformation. Plant Cell Tiss. Org. Cult. 36:1–7; 1994.CrossRefGoogle Scholar
  9. Dunder, E.; Dawson, J.; Suttie, J.; Pace, G. Maize transformation by microprojectile bombardment of immature embryos. In: Potrykus, I.; Spangenberg, G., eds. Gene transfer to plants, Berlin: Springer-Verlag; 1995:127–138.Google Scholar
  10. Fromm, M. E.; Morrish, F.; Armstrong, C. L.; Williams, R.; Thomas, J.; Klein, T. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833–839; 1990.PubMedCrossRefGoogle Scholar
  11. Fromm, M. Production of transgenic maize plants by microprojectile-mediated gene transfer. In: Freeling, M.; Walbot, V., eds. The maize handbook. New York: Springer-Verlag; 1994:677–684.Google Scholar
  12. Gordon-Kamm, W. J.; Spencer, T. M.; Mangano, M. L.; Adams, T.; Daines, R.; Start, W.; O'Brien, J.; Chambers, S.; Adams Jr., W.; Willetts, N.; Rice, T.; Mackey, C.; Krueger, R.; Kausch, A.; Lemaux, P. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618; 1990.PubMedCrossRefGoogle Scholar
  13. Gordon-Kamm, W. J.; Baszczynski, C. L.; Bruce, W. B.; Tomes, D. T. Transgenic Cereals—Zea mays (maize). In: Vasil, I. K. ed. Molecular improvement of cereal crops. Great Britain: Kluwer Academic Publishers; 1999:189–253.Google Scholar
  14. Ishida, Y.; Hideaki, S.; Ohta, S.; Hiei, Y.; Komari, T.; Kumashiro, T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol. 14:745–750; 1996.CrossRefGoogle Scholar
  15. Kausch, A. P.; Adams, T. R.; Mangano, M.; Zachwieja, S.; Gordon-Kamm, W.; Daines, R.; Willetts, N. G.; Chambers, S.; Adams, Jr. W.; Anderson, A.; Williams, G.; Haines, G. Effects of microprojectile bombardment on embryogenic suspension cell cultures of maize (Zea mays L.) used for genetic transformation. Planta 196:501–509; 1995.CrossRefGoogle Scholar
  16. Klein, T. M.; Gradziel, T.; Fromm, M. E.; Sanford, J. C. Factors influencing gene delivery into Zea mays cells by high velocity microprojectiles. Bio/Technol. 6:559–563; 1988.CrossRefGoogle Scholar
  17. Kohli, A.; Leech, M.; Vain, P.; Laurie, D. A.; Christou, P. Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc. Natl. Acad. Sci. 95:7203–7208; 1998.PubMedCrossRefGoogle Scholar
  18. Koziel, M. G.; Beland, G. L.; Bowman, C.; Carozzi, N. B.; Crenshaw, R.; Crossland, L.; Dawson, J.; Desai, N.; Hill, M.; Kadwell, S.; Launis, K.; Lewis, K.; Maddox, D.; McPherson, K.; Meghji, M.; Merlin, E.; Rhodes, R.; Warren, G.; Wright, M.; Evola, S. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11:194–200; 1993.CrossRefGoogle Scholar
  19. McCain, J. W.; Kamo, K. K.; Hodges, T. K. Characterization of somatic embryo development and plant regeneration from friable maize callus cultures. Bot. Gaz. 149:16–20; 1988.CrossRefGoogle Scholar
  20. Murashige, T.; Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.CrossRefGoogle Scholar
  21. Pareddy, D.; Petolino, J.; Skokut, T.; Hopkins, N.; Miller, M.; Welter, M.; Smith, K.; Clayton, D.; Pescitelli, S.; Gould, A. Maize transformation via helium blasting. Maydica 42:143–154; 1997.Google Scholar
  22. Pescitelli, S. M.; Sukhapinda, K., Stable transformation via electroporation into maize Type II callus and regeneration of fertile transgenic plants. Plant Cell Rep. 14:712–716; 1995.CrossRefGoogle Scholar
  23. Randolph-Anderson, B.; Boynton, J. E.; Dawson, J. Sub-micron gold particles are superior to larger particles for efficient biolistic transformation of organelles and some cell types. Bio-rad Literature On-Line. Available http.www.bio-rad.com/44684.html; 1995.Google Scholar
  24. Register, III, J. C.; Peterson, D. J.; Bell, P. J.; Bullock, W. P.; Evans, I.; Frame, B.; Greenland, A.; Higgs, N.; Jepson, I.; Jiao, S.; Lewnau, C.; Sillick, J.; Wilson, H. M., Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol. Biol. 25:951–961; 1994.PubMedCrossRefGoogle Scholar
  25. Sambrook, J.; Fritsch, E. F.; Maniatis, T., Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 1989.Google Scholar
  26. Sanford, J. C.; Smith, F. D.; Russel, J. A. Optimizing the biolistic process for different biological applications. Methods Enzymol. 217:483–509; 1993.PubMedCrossRefGoogle Scholar
  27. Sellmer, J. C.; Ritchie, S. W.; Kin, I. S.; Hodges, T. K. Initiation, maintenance and plant regeneration of type II callus and suspension cells. In: Freeling, M.; Walbot, V., eds. The maize handbook. New York: Springer-Verlag; 1994:671–677.Google Scholar
  28. Songstad, D. D.; Armstrong, C. L.; Petersen, W. L. AgNO3 increases type II callus production from immature embryos of maize inbred B73 and its derivatives. Plant Cell Rep. 6:699–702; 1991.Google Scholar
  29. Songstad, D. D.; Amstrong, C. L.; Peterson, W. L.; Hairston, B.; Hinchee, M. A. W. Production of transgenic maize plants and progeny by bombardment of Hi-II immature embryos. In Vitro Cell. Dev. Biol.-Plant 32:179–183; 1996.Google Scholar
  30. Spencer, T. M.; Gordon-Kamm, W. J.; Daines, R. J.; Start, W. G.; Lemaux, P. G. Bialaphos selection of stable transformants from maize cell culture. Theor. appl. Genet. 79:625–631; 1990.CrossRefGoogle Scholar
  31. Vain, P.; McMullen, M. D.; Finer, J. J. Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12:84–88; 1993.CrossRefGoogle Scholar
  32. Walters, D. A.; Vetsch, C. S.; Potts, D. E.; Lundquist, R. C., Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol. Biol. 18:189–200; 1992.PubMedCrossRefGoogle Scholar
  33. Wan, Y.; Widholm, J. M.; Lemaux, P. G. Type I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.). Planta 196:7–14; 1995.CrossRefGoogle Scholar
  34. Welter, M. E.; Clayton, D. S.; Miller, M. A.; Petolino, J. F. Morphotypes of friable embryogenic maize callus. Plant Cell Rep. 14:725–729; 1995.CrossRefGoogle Scholar
  35. Wilson, H. M.; Bullock, W. P.; Dunwell, J. M.; Ellis, J. R.; Frame, B.; Register, III, J. C.; Thompson, J. A. Maize. In: Wang, K.; Herrera-Estrella, A.; Van Montagu, M., eds. Transformation of plants and soil microorganisms. Cambridge: Cambridge University Press; 1995;65–80.Google Scholar
  36. Zhang, S.; Warkentin, D.; Sun, B.; Zhong, H.; Sticklen, M. Variation in the inheritance of expression among subclones from unselected (uidA) and selected (bar) transgenes in maize (Zea mays L.). Theor. Appl. Genet. 92:742–761; 1996.Google Scholar
  37. Zhao, Z. Y.; Gu, W.; Cai, T.; Tagliani, L. A.; Hondred, D. A.; Bond, D.; Krell, S.; Rudert, M. L.; Bruce, W. B.; Pierce, D. A. Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genetics Cooperative Newsletter 72:34–37; 1998.Google Scholar

Copyright information

© Society for In Vitro Biology 2000

Authors and Affiliations

  • Bronwyn R. Frame
    • 1
  • Hongyi Zhang
    • 1
  • Suzy M. Cocciolone
    • 3
  • Lyudmila V. Sidorenko
    • 3
  • Charles R. Dietrich
    • 3
  • Sue Ellen Pegg
    • 1
  • Shifu Zhen
    • 1
  • Patrick S. Schnable
    • 2
  • Kan Wang
    • 1
  1. 1.Plant Transformation Facility, Department of AgronomyIowa State UniversityAmes
  2. 2.Department of AgronomyIowa State UniversityAmes
  3. 3.Department of Zoology & GeneticsIowa State UniversityAmes

Personalised recommendations