High density micromass cultures of embryonic limb bud mesenchymal cells: An in vitro model of endochondral skeletal development

Cellular Models


To study the mechanisms regulating endochondral skeletal development, we examined the characteristics of long-term, high density micromass cultures of embryonic chicken limb bud mesenchymal cells. By culture Day 3, these cells underwent distinct chondrogenesis, evidenced by cellular condensation to form large nodules exhibiting cartilage-like morphology and extracellular matrix. By Day 14, extensive cellular hypertrophy was seen in the core of the nodules, accompanied by increased alkaline phosphatase activity, and the limitation of cellular proliferation to the periphery of the nodules and to internodular areas. By Day 14, matrix calcification was detected by alizarin red staining, and calcium incorporation increased as a function of culture time up to 2 to 3 wk and then decreased. X-ray probe elemental analysis detected the presence of hydroxyapatite. Analogous to growth cartilage developing in vivo, these cultures also exhibited time-dependent apoptosis, on the basis of DNA fragmentation detected in situ by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), ultrastructural nuclear morphology, and the appearance of internucleosomal DNA degradation. These findings showed that cellular differentiation, maturation, hypertrophy, calcification, and apoptosis occurred sequentially in the embryonic limb mesenchyme micromass cultures and indicate their utility as a convenient in vitro model to investigate the regulatory mechanisms of endochondral ossification.

Key words

micromass cultures endochondral ossification cartilage maturation calcification apoptosis collagen type X 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahrens, P. B.; Solursh, M.; Reiters, R. Stage-related capacity for limb chondrogenesis in cell culture. Dev. Biol. 60:69–82; 1977.PubMedCrossRefGoogle Scholar
  2. 2.
    Alini, M.; Carey, D.; Hirata, S., et al. Cellular and matrix changes before and at the time of calcification in the growth plate studied in vitro: arrest of Type X collagen synthesis and net loss of collagen when calcification is initiated. J. Bone Miner. Res. 9:1077–1087; 1994.PubMedGoogle Scholar
  3. 3.
    Alini, M.; Kofsky, Y.; Wu, W., et al. In serum-free culture thyroid hormones can induce full expression of chondrocyte hypertrophy leading to matrix calcification. J. Bone Miner. Res. 11:105–113; 1996.PubMedGoogle Scholar
  4. 4.
    Anderson, H. C. Molecular biology of matrix vesicles. Clin. Orthop. Relat. Res. 314:266–280; 1995.PubMedGoogle Scholar
  5. 5.
    Ballock, R.; Reddi, A. H. Thyroxine is the serum factor that regulates morphogenesis of columnar cartilage from isolated chondrocytes in chemically defined medium. J. Cell Biol. 126:1311–1318; 1994.PubMedCrossRefGoogle Scholar
  6. 6.
    Ballock, R. T.; Reddy, A. H. Morphogenesis of columnar cartilage from isolated chondrocytes in chemically-defined media is thyroxine dependent. Trans. Orthop. Res. Soc. 19:124; 1994.Google Scholar
  7. 7.
    Benya, P. D.; Schaffer, J. D. Dedifferentiation chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224; 1982.PubMedCrossRefGoogle Scholar
  8. 8.
    Boskey, A. L.; Stiner, D.; Doty, S. B., et al. Studies of mineralization in tissue culture: optimal conditions for cartilage calcification. J. Bone Miner. Res. 16:11–36; 1991.Google Scholar
  9. 9.
    Farnum, C. E.; Wilsman, N. J. Histochemical evidence of DNA fragmentation characteristic of apoptosis in hypertrophic chondrocytes. Trans. Orthop. Res. Soc. 20:77; 1995.Google Scholar
  10. 10.
    Flechtenmacher, J.; Aydelotte, M. B.; Hauselmann, H. J., et al. Growth plate chondrocytes but not other chondrocytes form single cell-columns on a modified alginate gel system. Trans. Orthop. Res. Soc. 19:416; 1994.Google Scholar
  11. 11.
    Galotto, M.; Campanile, G.; Robino, G., et al. Hypertrophic chondrocytes undergo further differentiation to osteoblast-like cells and participate in the initial bone formation in developing chicken embryo. J. Bone Miner. Res. 9:1239–1249; 1994.PubMedGoogle Scholar
  12. 12.
    Gavrieli, Y.; Sherman, Y.; Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119:493–501; 1992.PubMedCrossRefGoogle Scholar
  13. 13.
    Gerstenfeld, L. C.; Shapiro, F. D. Expression of bone-specific genes by hypertrophic chrondrocytes: implication of the complex functions of the hypertrophic chrondrocyte during endochondral bone development. J. Cell. Biochem. 62:1–9; 1996.PubMedCrossRefGoogle Scholar
  14. 14.
    Gibson, G. J.; Kohler, W. J.; Schaffler, M. B. Chondrocyte apoptosis in endochondral ossification of chick sterna. Dev. Dyn. 203:466–476; 1995.Google Scholar
  15. 15.
    Groessner-Schreiber, B.; Tuan, R. S. Enhanced extracellular matrix production and mineralization by osteoblasts cultured on titanium surfaces in vitro. J. Cell Sci. 101:209–217; 1992.PubMedGoogle Scholar
  16. 16.
    Groessner-Schreiber, B.; Kreitzer, D.; Tuan, R. S. Bone cell response to hydroxyapatite-coated titanium surfaces in vitro. Semin. Arthroplasty; 2:260–267; 1991.Google Scholar
  17. 17.
    Hatori, M.; Klatte, K. J.; Teixeira, C. C., et al. End labeling studies of fragmented DNA in the avian growth plate: evidence of apoptosis in terminally differentiated chondrocytes. J. Bone Miner. Res. 10:1960–1968; 1995.PubMedCrossRefGoogle Scholar
  18. 18.
    Hunziker, E. B. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microsc. Res. Tech. 28:505–519; 1994.PubMedCrossRefGoogle Scholar
  19. 19.
    Hunziker, E. B.; Ludi, A.; Herrmann, W. Preservation of cartilage matrix proteoglycans using cationic dyes chemically related to ruthenium hexamine trichloride. J. Histochem. Cytochem. 40:909–917; 1992PubMedGoogle Scholar
  20. 20.
    Jacenko, O.; Tuan, R. S. Calcium deficiency induces expression of cartilage-like phenotype in chicken embryo calvaria. Dev. Biol. 115:215–232; 1986.PubMedCrossRefGoogle Scholar
  21. 21.
    Kato, Y.; Iwamoto, M. Fibroblast growth factor is an inhibitor of chondrocyte terminal differentiation. J. Biol. Chem. 265:5903–5909; 1990.PubMedGoogle Scholar
  22. 22.
    Kiernan, J. A. Histological & histochemical methods. 2nd ed. New York: Pergamon Press; 1990.Google Scholar
  23. 23.
    Lev, R.; Spicer, S. Specific staining of sulphate groups with alcian blue at low pH. J. Histochem. Cytochem. 12:309; 1964.PubMedGoogle Scholar
  24. 24.
    Linsenmayer, T. F.; Hendrix, M. J. C. Monoclonal antibodies to connective tissues macromolecules: type II collagen. Biochem. Biophys. Res. Commun. 92:440–446; 1980.PubMedCrossRefGoogle Scholar
  25. 25.
    Loredo, G. A.; Koolpe, M.; Benton, H. P. Influence of alginate polysaccharide composition and culture conditions on chondrocytes in three-dimensional culture. Tissue Engineer. 2:115–125; 1996.CrossRefGoogle Scholar
  26. 26.
    Mello, M. A.; Tuan, R. S. Growth cartilage maturation in micromass cultures. Mol. Biol. Cell Suppl. 6:392a; 1995.Google Scholar
  27. 27.
    Mello, M. A.; Tuan, R. S. Programmed cell death in micromass cultures of growth cartilage derived from embryonic limb mesenchyme. Mol. Biol. Cell. Suppl. 7:581a; 1996.Google Scholar
  28. 28.
    Oberlender, S.; Tuan, R. S. Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development 120:177–197; 1990.Google Scholar
  29. 29.
    Pechak, D. G.; Ilujawa, M. J.; Caplan, A. L. Morphology of bone development and bone remodeling in embryonic chick limbs. Bone 7:459–472; 1986.PubMedCrossRefGoogle Scholar
  30. 30.
    Ray, S.; Ponnathpur, V.; Huang, Y., et al. 1-β-d-Arabinofuranosylcytosine-, mitoxantrone, and paclitaxel-induced apoptosis in HL-60 cells: improved method for detection of internucleosomal DNA fragmentation. Cancer Chemotherap. Pharmacol. 34:356–371; 1994.Google Scholar
  31. 31.
    Reginato, A. M.; Tuan, R. S.; Ono, T., et al. Effects of calcium deficiency on chondrocyte hypertrophy and type X collagen expression in chick embryonic sternum. Dev. Dyn. 189:284–295; 1993.Google Scholar
  32. 32.
    Roach, H. I.; Erenpreisa, J. The phenotypic switch from chrondrocytes to bone-forming cells involves asymmetric cell division and apoptosis. Connect. Tissue Res. 35:85–91; 1996.PubMedGoogle Scholar
  33. 33.
    Roach, I. New aspects of endochrondral ossification in the chick: chondrocyte apoptosis, bone formation by former chondrocytes, and acid phosphatase activity in the endochondral bone matrix. J. Bone Miner. Res. 12:795–805; 1997.PubMedCrossRefGoogle Scholar
  34. 34.
    Roach, I.; Erenpreisa, J.; Aigner, T. Osteogenic differentiation of hypertrophic chondrocytes involve asymmetric cell divisions and apoptosis. J. Cell Biol. 131:483–494; 1995.PubMedCrossRefGoogle Scholar
  35. 35.
    Roark, E. F.; Greer, K. Transforming growth factor-β and bone morphogenetic protein-2 act by distinct mechanisms to promote chick limb cartilage differentiation in vitro. Dev. Dyn. 200:103–116; 1994.PubMedGoogle Scholar
  36. 36.
    San Antonio, J. D.; Tuan, R. S. Chondrogenesis of limb mesenchyme in vitro: stimulation by cations. Dev. Biol. 115:313–324; 1986.PubMedCrossRefGoogle Scholar
  37. 37.
    Tilly, J. L.; Hsueh, A. J. W. Microscale autoradiographic method for the qualitative and quantitative analysis of apoptotic DNA fragmentation. J. Cell. Physiol. 154:519–526; 1993.PubMedCrossRefGoogle Scholar
  38. 38.
    Wong, M.; Tuan, R. S. Nuserum, a synthetic serum replacement, supports chondrogenesis of embryonic chick limb bud mesenchymal cells in micromass cultures. In vitro Cell. Dev. Biol. Animal 29:917–922; 1993.Google Scholar
  39. 39.
    Zenmyo, M.; Komiya, S.; Kawabata, R., et al. Morphological and biochemical evidence for apoptosis in the terminal hypertrophic chondrocytes of the growth plate. J. Pathol. 180:430–433; 1996.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 1999

Authors and Affiliations

  1. 1.Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryThomas Jefferson UniversityPennsylvania

Personalised recommendations