Advertisement

Behavior of a cell line derived from normal human hepatocytes on non-physiological and physiological-type substrates: Evidence for enhancement of secretion of liver-specific proteins by a three-dimensional growth pattern

  • Matthew Smalley
  • Kenneth Leiper
  • David Floyd
  • Margaret Mobberley
  • Tim Ryder
  • Clare Selden
  • Eve A. Roberts
  • Humphrey Hodgson
Cellular Models

Summary

The behavior of a recently described cell line, HH25, derived from normal human hepatocytes, has been investigated on several different substrates—tissue-culture plastic, glass, a thin layer of rat-tail collagen I, and thin layers or thick gels of extracellular matrix derived from the Engelbreth-Holm-Swarm murine sarcoma (EHS matrix). Cellular morphology, proliferation, and secretion of three hepatocyte-specific proteins (albumin, α1 acid glycoprotein, and α1 antitrypsin) have been examined. There were no differences in morphology, proliferation, or differentiated function in the cells on either plastic, glass, collagen, I, or a thin layer of EHS matrix, but on a thick EHS matrix gel the cells altered their morphology (forming three-dimensional colonies with canalicular-like structures) and their production of albumin and α1 acid glycoprotein was enhanced. This suggests that the enhanced differentiated function is associated with the morphological change (occurring only on the thick EHS gel) rather than with receptor-mediated cell-matrix interactions (which can also occur on the thin layer of EHS matrix). This cell line is therefore a good in vitro cellular model for the investigation of the roles of morphological changes and of cell-cell and cell-matrix interactions in the control of human hepatocyte behavior without the need for an extensive source of primary tissue.

Key words

EHS matrix morphology differentiation albumin canaliculi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barcellos-Hoff, M. H.; Aggeler, J.; Ram, T. G., et al. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105:223–235; 1989.PubMedGoogle Scholar
  2. 2.
    Berthiaume, F.; Moghe, P. V.; Toner, M., et al. Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration. FASEB J. 10:1471–1484; 1996.PubMedGoogle Scholar
  3. 3.
    Bhavani, K.; Brown, N. V.; Carlson, R. I., et al. The effect of ethanol and extracellular matrix on induction of p36 protein kinase substrate expression in rat hepatocytes. Biochem. Biophys. Res. Comm. 196:1454–1458; 1993.PubMedCrossRefGoogle Scholar
  4. 4.
    Blum, J. L.; Wicha, M. S. Role of the cytoskeleton in laminin induced gene expression. J. Cell. Physiol. 135:13–22; 1988.PubMedCrossRefGoogle Scholar
  5. 5.
    Blum, J. L.; Zeigler, M. E.; Wicha, M. Regulation of rat mammary gene expression by extracellular matrix components. Exp. Cell Res. 173:322–340; 1987.PubMedCrossRefGoogle Scholar
  6. 6.
    Bretton, R. H.; Pennypacker, J. P. Butyric acid causes morphological changes in cultured chondrocytes through alterations in the extracellular matrix. J. Cell. Physiol. 138:197–204; 1989.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen, L.; Bissell, M. J. A novel regulatory mechanism for whey acidic protein gene expression. Cell Regul. 1:45–54; 1989.PubMedGoogle Scholar
  8. 8.
    Denziot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89:271–277; 1989.CrossRefGoogle Scholar
  9. 9.
    Dipersio, C. H.; Jackson, D. A.; Zaret, K. S. The extracellular matrix coordinately modulates liver transcription factors and hepatocyte morphology. Mol. Cell. Biol. 11:4405–4414; 1991.PubMedGoogle Scholar
  10. 10.
    Gjessing, R.; Seglen, P. O. Adsorption, simple binding and complex binding of rat hepatocytes to various in vitro substrata. Exp. Cell Res. 129:239–249; 1980.PubMedCrossRefGoogle Scholar
  11. 11.
    Hynes, R. O. Integrins: a family of cell surface receptors. Cell 48:549–554; 1987.PubMedCrossRefGoogle Scholar
  12. 12.
    Karikusa, F.; Sawasaki, Y. The restoration of the functions of serially passaged calf hepatocytes by spheroid formation. In Vitro Cell. Dev. Biol. 32:30–27; 1996.Google Scholar
  13. 13.
    Kennedy, J. R.; Williams, R. W.; Gray, J. P. Use of Peldri II (a fluorocarbon solid at room temperature) as an alternative to critical point drying for biological tissues. J. Electron Microsc. Tech. 11:117–125; 1989.PubMedCrossRefGoogle Scholar
  14. 14.
    Kleinman, H. K.; McGarvey, M. L.; Hassell, J. R., et al. Basement membrane complexes with biological activity. Biochemistry 25:312–318; 1986.PubMedCrossRefGoogle Scholar
  15. 15.
    Knowles, B. B.; Howe, C. C.; Aden, D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209:497–499; 1980.PubMedCrossRefGoogle Scholar
  16. 16.
    Kono, Y.; Roberts, E. A. Modulation of the expression of liver-specific functions in novel human hepatocyte cell lines cultured in a collagen gel sandwich configuration. Biochem. Biophys. Res. Comm. 220:628–632; 1996.PubMedCrossRefGoogle Scholar
  17. 17.
    LeCluyse, E. L.; Adus, K. L.; Hochman, J. H. Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am. J. Physiol. 266:C1764–1774; 1994.PubMedGoogle Scholar
  18. 18.
    Lindblad, W. J.; Schuetz, E. G.; Redford, K. S., et al. Hepatocellular phenotype in vitro is influenced by biophysical features of the collagenous substratum. Hepatology 13:282–288; 1991.PubMedGoogle Scholar
  19. 19.
    Martinez-Hernandez, A.; Amenta, P. S. The hepatic extracellular matrix. I. Components and distribution in normal liver. Virchows Arch. A Pathol. Anat. Histopathol. 423:1–11; 1993.PubMedCrossRefGoogle Scholar
  20. 20.
    Moghe, P. V.; Berthiaume, F.; Ezzell, R. M., et al. Role of extracellular matrix composition and configuration in maintenance of hepatocyte polarity and function. Biomaterials 17:373–385; 1996.PubMedCrossRefGoogle Scholar
  21. 21.
    Mooney, D. J.; Hansen, L.; Vacanti, J., et al. Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J. Cell. Physiol. 151:497–505; 1992.PubMedCrossRefGoogle Scholar
  22. 22.
    Mooney, D. J.; Langer, R.; Ingber, D. E. Cytoskeletal filament assembly and the control of cell spreading and function by extracellular matrix. J. Cell Sci. 108:2311–2320; 1995.PubMedGoogle Scholar
  23. 23.
    Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63; 1983.PubMedCrossRefGoogle Scholar
  24. 24.
    Musat, A. I.; Sattler, C. A.; Sattler, G. L., et al. Reestablishment of cell polarity of rat hepatocytes in primary culture. Hepatology 18:198–205; 1993.PubMedGoogle Scholar
  25. 25.
    Nakabayashi, H.; Taketa, K.; Miyano, K., et al. Growth of human hepatoma cell lines with differentiated functions in chemically defined medium. Cancer Res. 42:3858–3863; 1982.PubMedGoogle Scholar
  26. 26.
    Nakamura, T.; Yoshimoto, K.; Nakayama, Y., et al. Reciprocal modulation of growth and differentiated functions of mature rat hepatocytes in primary culture by cell-cell contact and cell membranes. Proc. Natl. Acad. Sci. USA 80:7229–7233; 1983.PubMedCrossRefGoogle Scholar
  27. 27.
    Nebe, B.; Rychly, J.; Knopp, A., et al. Mechanical induction of β1-integrin-mediated calcium signalling in a hepatocyte cell line. Exp. Cell Res. 218:479–484; 1995.PubMedCrossRefGoogle Scholar
  28. 28.
    Oda, H.; Nozawa, K.; Hitomi, Y., et al. Laminin-rich extracellular matrix maintains high level of hepatocyte nuclear factor 4 in rat hepatocyte culture. Biochem. Biophys. Res. Comm. 212:800–805; 1995.PubMedCrossRefGoogle Scholar
  29. 29.
    Pfeifer, A. M. A.; Cole, K. E.; Smoot, D. T., et al. Simian virus 40 large tumor antigen-immortalized normal human liver epithelial cells express hepatocyte characteristics and metabolize chemical carcinogens. Proc. Natl. Acad. Sci. USA 90:5123–5127; 1993.PubMedCrossRefGoogle Scholar
  30. 30.
    Ponce, M. D. L.; Rojkind, M. Rat hepatocytes attach to laminin present in liver biomatrix by a Mg+ +-dependent mechanism. Hepatology 22:620–628; 1995.PubMedCrossRefGoogle Scholar
  31. 31.
    Roberts, E. A.; Letarte, M.; Squire, J., et al. Characterization of human hepatocyte lines derived from normal liver tissue. Hepatology 19:1390–1399; 1994.PubMedGoogle Scholar
  32. 32.
    Schuetz, E. G.; Li, D.; Omiecinski, C. J., et al. Regulation of gene expression in adult rat hepatocytes cultured on a basement membrane matrix. J. Cell. Physiol. 134:309–323; 1988.PubMedCrossRefGoogle Scholar
  33. 33.
    Shannon, J. M.; Pitelka, D. R. The influence of cell shape on the induction of functional differentiation in mouse mammary epithelial cells in vitro. In Vitro Cell. Dev. Biol. 17:1016–1028; 1981.CrossRefGoogle Scholar
  34. 34.
    Williams, G. M.; Weisburger, E. K.; Weisburger, J. H. Isolation and long-term culture of epithelial-like cells from rat liver. Exp. Cell Res. 69:106–112; 1971.PubMedCrossRefGoogle Scholar
  35. 35.
    Wu, G. S. Establishment and mechanistic characterization of SV40 T antigen immortalized hepatocytes. Chung Hua Chung Liu Tsa Chih 15:415–418; 1993.PubMedGoogle Scholar
  36. 36.
    Vukicevic, S.; Kleinman, H. K.; Luyten, F. P., et al. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular membrane components. Exp. Cell Res. 202:1–8; 1992.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 1999

Authors and Affiliations

  • Matthew Smalley
    • 1
  • Kenneth Leiper
    • 1
  • David Floyd
    • 1
  • Margaret Mobberley
    • 2
  • Tim Ryder
    • 2
  • Clare Selden
    • 1
  • Eve A. Roberts
    • 3
  • Humphrey Hodgson
    • 1
  1. 1.Liver Group Laboratory, Department of MedicineRoyal Postgraduate Medical School, Hammersmith HospitalLondonUnited Kingdom
  2. 2.Electron Microscopy Unit, Department of PathologyQueen Charlotte’s and Chelsea HospitalLondonUnited Kingdom
  3. 3.Division of Gastroenterology and Nutrition, The Hospital for Sick Children Research InstituteUniversity of TorontoTorontoCanada

Personalised recommendations